

# PROGRAMA DE UNIDADE DIDÁTICA - PUD

# DISCIPLINA: COMPUTAÇÃO GRÁFICA

Código:

Carga Horária: 80h

Número de Créditos: 4

Código pré-requisito: Álgebra Linear

Semestre: S7

Nível: Bacharelado

## **EMENTA**

Computação gráfica: origem e definição. Introdução ao processamento de imagens. Periféricos. Representação de objetos. Visualização bidimensional. Visualização tridimensional. Introdução ao realismo tridimensional.

#### **OBJETIVO**

Adquirir conceitos básicos de Computação Gráfica 2D e 3D. Implementar softwares que envolvam técnicas de computação Gráfica. Dimensionar um ambiente de trabalho que envolva periféricos com capacidade gráfica.

#### **PROGRAMA**

# 1. INTRODUÇÃO À COMPUTAÇÃO GRÁFICA

- 1.1. Origens
- 1.2. Conceito
- 1.3. Sub-áreas
- 1.4. Aplicações

### 2. BIBLIOTECA GRÁFICA OpenGL

- 2.1. Inicialização
- 2.2. Bibliotecas GLUT e JOGL
- 2.3. Definição de Entidades Gráficas
- 2.4. Uso de Transformações Geométricas
- 2.5. Uso de Cores
- 2.6. Funções OpenGL para Visualização

### 3. PROCESSAMENTO DE IMAGENS

- 3.1. Introdução e Exemplos de Aplicações
- 3.2. Tipos de Imagens: true color, HDR e palette
- 3.3. Algoritmos de Quantização
- 3.4. Filtros (ex: anti-aliasing, detecção de bordas)
- 3.5. Segmentação

### 4. REPRESENTAÇÃO DE OBJETOS E CENAS

- 4.1. Sistema de Coordenadas Cartesianas
- 4.2. Formas de Representação
  - 4.2.1. Vetorial x Matricial
  - 4.2.2. Enumeração Espacial
  - 4.2.3. Representação Aramada

- 4.2.4. Superficies Limitantes
- 4.2.5. Representação Paramétrica
- 4.2.6. Grafo de Cena
- 4.3. Técnicas de Modelagem
  - 4.3.1. Varredura
  - 4.3.2. CSG
  - 4.3.3. Instanciamento de Primitivas
  - 4.3.4. Fractais

## 5. PROCESSO DE VISUALIZAÇÃO

- 5.1. Transformações Geométricas
- 5.2. Instanciamento
- 5.3. Conceito de Window e Viewport
- 5.4. Conceito de Câmera Sintética
- 5.5. Projeções
- 5.6. Rasterização

### 6. CURVAS E SUPERFÍCIES PARAMÉTRICAS

- 6.1. Representação de Curvas e Superfícies
- 6.2. Curvas Paramétricas
- 6.3. Superficies Paramétricas

### 7. ELIMINAÇÃO DE SUPERFÍCIES ESCONDIDAS

- 7.1. Eliminação de faces traseiras
- 7.2. Algoritmo do Pintor
- 7.3. Algoritmo Z-Buffer
- 7.4. Árvores BSP

### 8. GERAÇÃO DE IMAGENS COM REALISMO

- 8.1. Modelos de iluminação
  - 8.1.1. Pontual
  - 8.1.2. Directional
  - 8.1.3. Spot
- 8.2. Modelos de reflexão
  - 8.2.1. Ambiente
  - 8.2.2. Difusa
  - 8.2.3. Especular
- 8.3. Métodos de tonalização
  - 8.3.1. Flat
  - 8.3.2. Gouraud
  - 8.3.3. Phong
  - 8.3.4. Mapeamento de Textura
  - 8.3.5. Conceitos Básicos de Ray Tracing
  - 8.3.6. Radiosidade

| 9. TÓ | PICOS EM | COMPUTAÇA | ÃO GRÁFICA |
|-------|----------|-----------|------------|
|-------|----------|-----------|------------|

- 9.1. Estereoscopia
- 9.2. Realidade Virtual
- 9.3. Visualização
- 9.4. Animação

### METODOLOGIA DE ENSINO

Aulas expositivas e atividades práticas no laboratório.

# **AVALIAÇÃO**

Avaliação do conteúdo teórico.

Avaliação das atividades desenvolvidas em laboratório.

### **BIBLIOGRAFIA BÁSICA**

- **1.** ANGEL, Edward. **Interactive computer graphics**: a top-down approach with OpenGL. Reading, MA: Addison-Wesley, 2000.
- **2.** HEARN, Donald. **Computer graphics with OpenGL**. 3. ed. Upper Saddle River, NJ: Pearson Education, 2004.

#### **BIBLIOGRAFIA COMPLEMENTAR**

- 1. BORGES, José Antonio. Introdução às técnicas de computação gráfica 3D. Rio de Janeiro: SBC, 1988.
- 2. COHEN, Marcelo; MANSSOUR, Isabel. **OpenGL**: Uma Abordagem Prática e Objetiva. São Paulo: Novatec, 2006.
- 3. PERSIANO, Ronaldo César Marinho. Introdução à computação gráfica. Belo Horizonte: UFMG, 1986.

| Coordenador do Curso | Setor Pedagógico |
|----------------------|------------------|
|                      |                  |