DISCIPLINA:	INTELIGÊNCIA COMPUTACIONAL APLICADA	
Código:	ICA	
Carga Horária Total: 80	CH Teórica: 40h	CH Prática: 40h
Número de Créditos:	4	
Pré-requisitos:	INTELIGÊNCIA ARTIFICIAL	
Semestre:	7°	
Nível:	Superior	

EMENTA

Extração de Características em sistemas de IC, Aprendizagem de Máquina, Máquinas de Vetor de Suporte, Lógica Nebulosa, Projeto de sistemas Inteligentes

OBJETIVO

Apresentar ao discente os conceitos, modelos, métodos e técnicas necessárias para o desenvolvimento de aplicações de IA em Sistemas de Processamento de Dados.

PROGRAMA

Unidade I - Extração de Características em sistemas de IC

- Redução de dimensionalidade;
- Características discriminantes;
- Geração de características usando transformadas lineares;
- Características para a análise de imagens;
- Seleção de características.

Unidade II - Aprendizagem de Máquina

- Árvores de Decisão: Representação de Árvores de Decisão, Algoritmo de Aprendizagem ID3, Entropia e Ganho de Informação
- Aprendizagem Baseadas em Instâncias: Espaço Euclidiano, Aprendizagem Baseada em Instâncias (ou Modelos Baseados em Distância), Regra k-NN (k vizinhos mais próximos)

Unidade III - Máquinas de Vetor de Suporte

- Classificação com máxima margem
- Kernels e otimização
- Maquinas de vetor suporte (svm support vector machines) para problemas de classificação e regressão;
- Maquinas de vetor suporte em problemas de múltiplas classes.

Unidade IV - Lógica Nebulosa

- Fundamentos de Lógica Fuzzy e conceitos
- Operações sobre conjuntos fuzzy
- Modelos de decisão fuzzy
- Aprendizado em Sistemas fuzzy
- Fuzzy Engineering
- Sistemas neuro-fuzzy

Unidade V - Projeto de sistemas Inteligentes

 Desenvolvimento de projetos específicos de interesse dos estudantes nas diferentes subáreas da Ciência da Computação

METODOLOGIA DE ENSINO

Aulas teóricas:

- Ministradas em sala, ou outro ambiente que facilite o processo de ensino-aprendizagem, por meio expositivo-dialógico e com discussões com resolução de exercícios, onde a ênfase está em demonstrações conceituais e fundamentos essenciais;
- Como recursos de apoio, tem-se a utilização do quadro branco, projetor de slides e livro(s) de referência(s)

Aulas práticas:

- Ministradas em laboratório de informática, ou outro ambiente que facilite a
 consolidação dos conceitos fundamentais, por meio do uso e melhoramento de suas
 habilidades de trabalho ativo, onde a ênfase está na reflexão sobre o que se faz,
 provocando o encontro de significados no que for visto na aula teórica.
- Como recursos de apoio, tem-se a utilização de ferramentas para programação de computadores, de plataformas online de ensino aprendizagem de Aprendizagem de Máquina ou Ciência de Dados e trabalhos dirigidos à reprodução de aplicações de Inteligência Computacional em problemas cotidianos

Prática Profissional Supervisionada e projetos interdisciplinares:

- A PPS compreende diferentes situações de vivência profissional, aprendizagem e trabalho, por meio de experiências profissionais supervisionadas pelo professor, onde a ênfase é o estímulo à consolidação de um perfil pró-ativo, com a autoconfiança necessária para uma atuação profissional protagonista
- Deverá ser dada prioridade à realização de projetos interdisciplinares, tais como, por exemplo, o desenvolvimento de sistemas com Computação Bioinspirada e IA, em conjunto com Pesquisa Operacional (ou não), conduzidos com métodos de das disciplinas de Cálculo 1 e 2 e Metodologia Científica, possibilitando o diálogo entre diferentes disciplinas ou turmas, de maneira a integrar os conhecimentos distintos e com o objetivo de dar sentido a eles.
- Como sugestão de recursos de apoio, tem-se a realização de projetos finais para a

disciplina, investigação sobre atividades profissionais, projetos de pesquisa ou outros trabalhos acadêmicos, visitas técnicas, simulações e observações as quais deverão ser desenvolvidas nos diversos ambientes de aprendizagem, como oficinas, incubadoras, empresas pedagógicas ou salas na própria instituição de ensino ou em entidade parceira..

AVALIAÇÃO

O processo avaliativo deve ser contínuo e constante durante todo o processo de ensino-aprendizagem, com o propósito de analisar o progresso do aluno, criando indicadores capazes de apontar meios para ajudá-lo na construção do conhecimento.

Desta forma, para início do processo ensino-aprendizagem, sugere-se avaliações diagnósticas

Desta forma, para início do processo ensino-aprendizagem, sugere-se avaliações diagnósticas, como forma de se construir um panorama sobre as necessidades dos alunos e, a partir disso, estabelecer estratégias pedagógicas adequadas e trabalhar para desenvolvê-los, inclusive evidenciando os casos que necessitarão de métodos diferenciados em razão de suas especificidades, tais como a necessidade de inclusão. Essas avaliações deverão seguir, preferencialmente, métodos qualitativos, todavia, também seguirão métodos quantitativos quando cabíveis dentro dos contextos individuais e coletivos da turma.

Durante toda a continuidade do processo ensino-aprendizagem, sugere-se a promoção, em alta frequência, de avaliações formativas capazes de proporcionar ao docente um feedback imediato de como estão as interferências pedagógicas em sala de aula, e permitindo ao aluno uma reflexão sobre ele mesmo, exigindo autoconhecimento e controle sobre a sua responsabilidade, frente aos conteúdos já vistos em aula, privilegiando a preocupação com a satisfação pessoal do aluno e juntando informações importantes para mudanças na metodologia e intervenções decisivas na construção de conhecimento dos discentes. Ao final de cada etapa do período letivo, pode-se realizar avaliações somativas, com o objetivo de identificar o rendimento alcançado tendo como referência os objetivos previstos para a disciplina. Há nesses momentos a oportunidade de utilizar recursos quantitativos, tais como exames objetivos ou subjetivos, inclusive com recursos de TIC, todavia, recomenda-se a busca por métodos qualitativos, baseados no planejamento de projetos coletivos, ações interdisciplinares ou atuação em seminários, dentre outros.

BIBLIOGRAFIA BÁSICA (3)

Lanzillotti, H. S.; Lanzillotti, R. S. **Lógica Fuzzy: uma Abordagem Para Reconhecimento de Padrão**. Paco Editorial, 2014. ISBN 978-8581485317.

Silva, L. A. Introdução à mineração de dados: com Aplicações em R. GEN LTC, 2016. ISBN 9788535284461.

Grus, J. Data Science do Zero: Primeiras Regras com o Python. Alta Books, 2016. ISBN 9788576089988.

BIBLIOGRAFIA COMPLEMENTAR

Wickham, H.; Grolemund, G.; Batista, S. **R Para Data Science**. Alta Books, 2019. ISBN 978-8550803241.

McKinney, Wes. Python Para Análise de Dados: Tratamento de Dados com Pandas, NumPy e IPython. Novatec, 2018. ISBN 9788575226476.

SIMÕES, Marcelo Godoy; SHAW, Ian S. **Controle e modelagem fuzzy**. Blucher, 2007. E-book (201 p.). ISBN 9788521215479.

MARQUES, Jorge Salvador Marques. **Reconhecimento de padrões:** métodos estatísticos e neuronais. IST Press, 2005. ISBN 978-972-8469-08-5.

LUGER, George F. **Inteligência Artificial**. Pearson, 2013. E-book (636 p.). ISBN 9788581435503.

ZACH, Richard. **What if? An Open Introduction to Non-Classical Logics**. Open Educational Resource, 2020. Disponível em:

https://builds.openlogicproject.org/courses/what-if/wi-screen.pdf. Acesso em: 27 nov. 2021.

Coordenador do Curso	Setor Pedagógico