DISCIPLINA:	SISTEMAS EMBARCADOS		
Código:	SIE		
Carga Horária Total: 80	CH Teórica: 32	CH Prática: 32	CH Extensão: 0
Número de Créditos:	4		
Pré-requisitos:	INTRODUÇÃO A ELETRICIDADE E ELETRÔNICA		
Semestre:	-		
Nível:	Superior		

EMENTA

Contexto da computação embarcada, Desenvolvimento de Sistemas Embarcados baseados em Microcontroladores, gerenciamento de eficiência energética.

OBJETIVO

Capacitar os alunos ao desenvolvimento de projetos de sistemas computacionais embarcados baseados em microcontroladores.

PROGRAMA

Unidade I - Contexto da Computação Embarcada

- Aplicações de sistemas embarcados
- Requisitos de sistemas embarcados
- Systems-on-Chip (SoCs)
- Tendências Tecnológicas

Unidade II - Especificação de Sistemas Embarcados

- Linguagens para especificação
- Modelos de computação subjacentes

Unidade III - Desenvolvimento de Sistemas Embarcados baseados em Microcontroladores

- Arquitetura de Microcontroladores
- Assembly x Linguagem de Programação de alto nível
- Circuitos de clock e de pulsos digitais
- Leitura e Escrita de dados digitais
- Contadores e Temporizadores
- Leitura de dados analógicos
- PWM
- Comunicação Serial
- Interrupções

Unidade IV - Gerenciamento de Eficiência Energética

Gerenciamento dinâmico de potência (DPM)

• Gerenciamento dinâmico via redução de tensão (DVS)

METODOLOGIA DE ENSINO

Aulas teóricas:

- Ministradas em sala, ou outro ambiente que facilite o processo de ensino-aprendizagem, por meio expositivo-dialógico e com discussões com resolução de exercícios, onde a ênfase está em demonstrações conceituais e fundamentos essenciais;
- Como recursos de apoio, tem-se a utilização do quadro branco, projetor de slides e livro(s) de referência(s)

Aulas práticas:

- Ministradas em laboratório de informática, ou outro ambiente que facilite a consolidação dos conceitos fundamentais, por meio do uso e melhoramento de suas habilidades de trabalho ativo, onde a ênfase está na reflexão sobre o que se faz, provocando o encontro de significados no que for visto na aula teórica.
- Como recursos de apoio, tem-se a utilização de APIs para programação de sistemas embarcados, de plataformas online de ensino aprendizagem de microcontroladores e trabalhos dirigidos à reprodução de aplicações rápidas para sistemas embarcados, ou parte deles, utilizando os conceitos da disciplina

Prática Profissional Supervisionada e projetos interdisciplinares:

- A PPS compreende diferentes situações de vivência profissional, aprendizagem e trabalho, por meio de experiências profissionais supervisionadas pelo professor, onde a ênfase é o estímulo à consolidação de um perfil pró-ativo, com a autoconfiança necessária para uma atuação profissional protagonista
- Deverá ser dada prioridade à realização de projetos interdisciplinares, tais como, por exemplo, o desenvolvimento de sistemas com Eletricidade e Eletrônica mais Circuitos Digitais, conduzidos com métodos de Metodologia do Trabalho Científico, possibilitando o diálogo entre diferentes disciplinas ou turmas, de maneira a integrar os conhecimentos distintos e com o objetivo de dar sentido a eles.
- Como sugestão de recursos de apoio, tem-se a realização de projetos finais para a
 disciplina, investigação sobre atividades profissionais, projetos de pesquisa ou outros
 trabalhos acadêmicos, visitas técnicas, simulações e observações as quais deverão ser
 desenvolvidas nos diversos ambientes de aprendizagem, como oficinas, incubadoras,
 empresas pedagógicas ou salas na própria instituição de ensino ou em entidade
 parceira.

AVALIAÇÃO

O processo avaliativo deve ser contínuo e constante durante todo o processo de ensino-aprendizagem, com o propósito de analisar o progresso do aluno, criando indicadores capazes de apontar meios para ajudá-lo na construção do conhecimento.

Desta forma, para início do processo ensino-aprendizagem, sugere-se avaliações diagnósticas,

como forma de se construir um panorama sobre as necessidades dos alunos e, a partir disso, estabelecer estratégias pedagógicas adequadas e trabalhar para desenvolvê-los, inclusive evidenciando os casos que necessitarão de métodos diferenciados em razão de suas especificidades, tais como a necessidade de inclusão. Essas avaliações deverão seguir, preferencialmente, métodos qualitativos, todavia, também seguirão métodos quantitativos quando cabíveis dentro dos contextos individuais e coletivos da turma.

Durante toda a continuidade do processo ensino-aprendizagem, sugere-se a promoção, em alta frequência, de avaliações formativas capazes de proporcionar ao docente um feedback imediato de como estão as interferências pedagógicas em sala de aula, e permitindo ao aluno uma reflexão sobre ele mesmo, exigindo autoconhecimento e controle sobre a sua responsabilidade, frente aos conteúdos já vistos em aula, privilegiando a preocupação com a satisfação pessoal do aluno e juntando informações importantes para mudanças na metodologia e intervenções decisivas na construção de conhecimento dos discentes. Ao final de cada etapa do período letivo, pode-se realizar avaliações somativas, com o objetivo de identificar o rendimento alcançado tendo como referência os objetivos previstos para a disciplina. Há nesses momentos a oportunidade de utilizar recursos quantitativos, tais como exames objetivos ou subjetivos, inclusive com recursos de TIC, todavia, recomenda-se a busca por métodos qualitativos, baseados no planejamento de projetos coletivos, ações interdisciplinares ou atuação em seminários, dentre outros.

BIBLIOGRAFIA BÁSICA

DENARDIN, Gustavo Weber; BARRIQUELLO, Carlos Henrique. **Sistemas operacionais de tempo real e sua aplicação em sistemas embarcados.** São Paulo: Editora Blucher, 2019. **ISBN:** 9788521213970.

FIORE, James M. et al. **Embedded controllers using C and Arduino.** 2016. Disponível em: http://www.dissidents.com/resources/EmbeddedControllers.pdf>. Acesso em 20 Jul. 2020.

FITZGERALD, Scott; SHILOH, Michael. **Arduino Projects Book.** 2016. Disponível em: https://bastiaanvanhengel.files.wordpress.com/2016/06/arduino_projects_book.pdf>. Acesso em 20 Jul. 2020.

OLIVEIRA, A. S. de; ANDRADE, F. S. de. **Sistemas embarcados:** hardware e firmware na prática. São Paulo: Editora Érica, 2010. ISBN 9788536501055.

ALMEIDA, R. M. A.; MORAES, C. H. V.; SERAPHIM, T. F. P. **Programação de sistemas embarcados:** desenvolvendo software para microcontroladores em linguagem C. Rio de Janeiro: GEN LTC, 2016. ISBN 9788535285185.

ZELENOVSKY, Ricardo. **Arduino:** guia avançado para projetos. Rio de Janeiro: Editora Interciência, 2019. ISBN 9788571934368.

BIBLIOGRAFIA COMPLEMENTAR

ZIMMER, Vincent et al. **Embedded Firmware Solutions: Development Best Practices for the Internet of Things**. Springer Nature, 2015. Disponível em:

https://link.springer.com/book/10.1007%2F978-1-4842-0070-4 >. Acesso em 20 Jul. 2020. (PDF Online)

RUAN, Xiaoyu. **Platform Embedded Security Technology Revealed**. Springer Nature, 2014. Disponível em: <https://link.springer.com/book/10.1007%2F978-1-4302-6572-6 >. Acesso em 20 Jul. 2020. **(PDF Online)**

VALDIVIESO, Carlos; SOLÍS, Ronald. **Microprocesadores Fundamentos y Aplicaciones.** 2019. Open Textbook Library. Disponível em:

https://mountainscholar.org/bitstream/handle/20.500.11785/590/BookId-511-MicroprocesadoresFundamentosyAplicaciones.pdf?sequence=1&isAllowed=y. Acesso em 20 Jul. 2020. (PDF Online)

GIMENEZ, Salvador P. **Microcontroladores 8051: teoria do Hardware e do Software: aplicações em controle digital: laboratório e simulação**. Pearson. E-book. (272 p.). ISBN 9788587918284. Disponível em: http://ifce.bv3.digitalpages.com.br/users/publications/9788587918284 >. Acesso em: 20 Jul. 2020.

VALVANO, Jonathan W.; YERRABALLI, Ramesh; **Embedded Software in C for an ARM Cortex M.** 2015. Disponível em:

https://gurusaiprasanth.files.wordpress.com/2015/09/embedded-software-in-c-for-arm-cortex-m.pdf
>. Acesso em 20 Jul. 2020.

OLIVEIRA, C. L. V.; ZANETTI, H. A. P. **Arduino descomplicado:** como elaborar projetos de eletrônica. São Paulo: Editora Érica, 2015. ISBN 9788536512280.

PEREIRA, Fábio. **Microcontrolador PIC 18 detalhado:** hardware e software. São Paulo: Érica, 2010. ISBN 9788536502717.

SOUZA, V. A. Aplicações eletrônicas na Beagleboard Com base na beaglebone black. Cerne, 2013.

OLIVEIRA, C. L. V.; NABARRO, C. B. M.; ZANETTI, H. A. P. **Raspberry PI Descomplicado.** São Paulo: Érica, 2018. ISBN 9788536527017.

OLIVEIRA, Sérgio de. Internet das Coisas com ESP8266, Arduino e Raspberry Pi. São Paulo: Novatec, 2017. ISBN 9788575225813.

Coordenador do Curso	Setor Pedagógico	