

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ - IFCE CAMPUS LIMOEIRO DO NORTE MESTRADO ACADÊMICO EM TECNOLOGIA DE ALIMENTOS

ANAKLÁUDIA SOMBRA SANTOS

PRODUÇÃO DE PÓ DE PITAIA VERMELHA (Hylocereus costaricensis) VIA
ATOMIZAÇÃO SPRAY DRYING PARA ENRIQUECIMENTO DE IOGURTE TIPO
GREGO

ANAKLÁUDIA SOMBRA SANTOS

PRODUÇÃO DE PÓ DE PITAIA VERMELHA (Hylocereus costaricensis) VIA ATOMIZAÇÃO SPRAY DRYING PARA ENRIQUECIMENTO DE IOGURTE TIPO GREGO

Dissertação de Mestrado apresentada ao Curso de Tecnologia de Alimentos do Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), campus Limoeiro do Norte, como requisito parcial para obtenção do título de Mestre em Tecnologia de Alimentos.

Orientador: Prof. Dr. Rinaldo dos Santos Araújo.

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA IFCE CAMPUS LIMOEIRO DO NORTE

DIS

S237p

Santos, Anakláudia Sombra.

Produção de pó de pitaia vermelha (*Hylocereus costaricensis*) via atomização *spray drying* para enriquecimento de iogurte tipo grego / Anakláudia Sombra Santos. – Limoeiro do Norte, 2015.

113 fls.

Dissertação (Mestrado em Tecnologia de Alimentos) — Instituto Federal de Educação, Ciência e Tecnologia do Ceará, *Campus* Limoeiro do Norte, 2015.

"Orientação: Prof. Dr. Rinaldo dos Santos Araújo." Referências.

1. Bioatividade. 2. Análise Sensorial. 3. Antioxidantes. 4. Alimento Funcional. I. Araújo, Rinaldo dos Santos. II. Título.

CDD 634.775

ANAKLÁUDIA SOMBRA SANTOS

PRODUÇÃO DE PÓ DE PITAIA VERMELHA (Hylocereus costaricensis) VIA ATOMIZAÇÃO SPRAY DRYING PARA ENRIQUECIMENTO DE IOGURTE TIPO GREGO

Dissertação apresentada ao Curso de Mestrado em Tecnologia de Alimentos do Instituto Federal do Ceará *Campus* Limoeiro do Norte como requisito para obtenção do título de Mestre em Tecnologia de Alimentos.

Aprovada em: <u>28/07/15</u>.

BANCA EXAMINADORA

Prof. Dr. Rinaldo dos Santos Araújo (Orientador)

Instituto Federal do Ceará - IFCE Campus Fortaleza

Prof. Dr. Pahlevi Augusto de Souza

Instituto Federal do Ceará - IFCE Campus Limoeiro do Norte

Prof. Dra. Ariosvana Fernandes Lima

riosvana ternandes Dima

Instituto Federal do Ceará - IFCE Campus Limoeiro do Norte

Dedico este trabalho a Deus, por tudo, por ser meu escudo, minha fortaleza e nunca ter me deixado fraquejar. Dedico também a minha mãe, sem a qual eu não teria chegado até aqui, obrigada pelo esforço, carinho, amor e perseverança para prover educação aos seus filhos, a senhora é meu exemplo de amor, de mãe e de mulher, e, mais que isso, é meu exemplo de vida, eu te amarei para sempre!

AGRADECIMENTOS

A Deus, pelo dom da vida, por Sua infinita bondade e força para superação de todas as dificuldades. Seu fôlego de vida em mim me foi sustento e me deu coragem para questionar realidades e propor sempre um novo mundo de possibilidades.

A minha mãe Maria Luiza e meu irmão Kássio, pelo amor, incentivo e confiança dedicados a mim, e por serem meu porto seguro sempre.

A toda minha família, que cultivou em mim os princípios de união, amor, generosidade e perseverança.

A minha prima e afilhada Danielle Sombra, por todo o apoio, paciência, amizade e empenho em me ajudar na produção da marca de meu produto. Obrigada por sempre me impulsionar em direção às vitórias dos desafios que tenho enfrentado ao longo desses anos, sua ajuda e companheirismo têm sido muito importante.

Aos meus Tios Hildene Sombra, Dalva Sombra, Francisco de Assis e Verônica Sombra, por me darem forças e apoio, torcendo por mim sempre.

Ao meu orientador Prof. Dr. Rinaldo Araújo, pela competência, ensinamentos, paciência e dedicação. Os seus conhecimentos exímios, a sua dedicação e as suas sugestões foram essenciais para a realização deste trabalho. Serei eternamente grata por tudo que fizeste por mim e por me tornar uma profissional melhor!

Aos meus amigos, pelo incentivo e amizade dedicados a mim e por estarem sempre presentes nos momentos mais difíceis me apoiando. Em especial Mirela Campos, Graziella Iara, Joseani Sombra e Jonas Ferreira.

A Francinaldo Ribeiro pela amizade e estímulo mesmo quando o cansaço parecia me abater e, principalmente pela confiança e carinho dedicados. Obrigado pelas palavras de apoio que eu ouvi durante todo esse tempo em que tive momentos turbulentos, com certeza foram fundamentais para me manter firme.

A todos aqueles que tive oportunidade de conhecer, conviver e trabalhar durante esse tempo na minha turma de Mestrado. Obrigada por se fazerem presentes durante esse tempo, me incentivando e compartilhando angústias. Em especial Gilnara Bandeira, que se tornou mais que uma amiga, uma irmã que Deus me permitiu escolher. Esses dois anos foram muito especiais e, certamente, vou sentir saudades!.

Aos meus professores dessa empreitada, responsáveis por me ajudarem a construir esse tão sonhado futuro profissional que almejo. Em especial ao Prof. Dr. Pahlevi Augusto e a Prof^a. Dra. Ariosvana Fernandes.

As minhas amigas Gizeuda Freitas e Fátima Freitas, por me ajudarem me oferecendo mais que um lugar para ficar nesse período em Fortaleza, mas por fazerem com que eu me sentisse parte da família, me dando apoio, amizade, amor e companheirismo. Obrigada por tudo!

A minha amiga Liliane Cunha e sua mãe Marta Cunha, por tudo que fizeram por mim. Vocês são pessoas que levarei para sempre em minha vida!

À Lidiana Souza e seu esposo Cláudio, por tudo que fizeram por mim durante esse período em que busquei novos horizontes longe de casa.

Aos bolsistas de iniciação científica Vandesônia e Joyciane, que estiveram comigo, por toda ajuda, zelo e disponibilidade durante a realização dos experimentos.

Aos amigos que fiz no Laboratório de Tecnologia Química (LTQ) do IFCE *Campus* Fortaleza, por me ajudarem nessa empreitada, em especial a Luanny, Emanuelle, Paulo Henrique, Lukas Angelim, Lara, Sannara, Cícero, Rodrigo, Lanna, Monique, Amanda e Cassiano.

Ao Prof. Dr. Danilo Queiroz, da Universidade Federal do Ceará, pela ajuda imprescindível na execução de parte de meus experimentos.

À Josy Silva, por sua valiosa contribuição no desenvolvimento dos estudos de analise sensorial desta dissertação.

Aos técnicos de laboratório do IFCE *Campus* Limoeiro do Norte: Juciene Lima, Mayra Cristina, Jorge Nogueira e Jarbas Rodrigues. Em especial, a minha grande amiga Auriana Régis, pela ajuda valiosa durante a realização do meu experimento.

À Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), pelo apoio e incentivo financeiro, que propiciou o desenvolvimento dessa pesquisa.

Ao IFCE Campus Limoeiro do Norte pelas oportunidades de construir pouco a pouco, ao longo desses anos, minha carreira profissional.

Não me permito acomodar-me com o que me convém por medo de nunca alcançar aqueles que um dia levantaram e saíram em busca de seu futuro, pois não é o topo do sucesso que me encanta, mas sim o caminho que me leva até lá e que me torna grande.

A autora.

RESUMO

A pitaia vermelha (Hylocereus costaricensis) é uma fruta que vem sendo comercialmente procurada não apenas pelo exotismo de sua aparência, como também por suas características organolépticas e nutritivas, bem como pela presença de compostos bioativos, como vitaminas, compostos fenólicos e pigmentos, os quais podem vir a atuar no organismo como agentes antioxidantes. A atomização spray drying, quando associada à microencapsulação, tem se mostrado uma ótima alternativa tecnológica para o processamento de frutos, conferindo estabilidade dos alimentos e manutenção de seu valor nutritivo. Assim, neste trabalho, foi estudada a otimização do processo spray drying do suco de pitaia vermelha visando desenvolver um produto rico em compostos bioativos para enriquecimento de um iogurte tipo avaliadas grego. Experimentalmente foram as características físico-químicas microbiológicas da polpa de pitaia vermelha. Para os estudos de atomização spray drying foi avaliada a influência dos parâmetros de secagem: temperatura (153, 160, 180e 187°C), vazão de alimentação (6, 7,5, 9 e 10mL.min⁻¹) e taxa de aspiração (90, 92, 95, 98, 100%) sobre o rendimento (%) do pó obtido e retenção de antioxidantes totais (mg Trolox/g) usando um planejamento experimental composto. Para os estudos de estabilidade do pó, foram realizadas determinações dos compostos bioativos nas amostras em um período de armazenamento de 90 dias. Os resultados obtidos mostraram como parâmetros ótimos da atomização spray drying: temperatura de secagem de 160°C, vazão de alimentação de 6mL.min⁻¹ e taxa de aspiração de 92%. Nessas condições, o rendimento máximo foi de 59,89% e o teor de antioxidantes totais foi de 12,35%. Em relação à estabilidade do pó, observou-se que os compostos bioativos apresentaram diferenças significativas (p < 0.05) durante o armazenamento. Os testes sensoriais de frequência de consumo, aceitação e intenção de compra realizado com 120 provadores mostrou que aproximadamente 72% destes possuíam familiaridade com o iogurte tipo grego comercial; em relação a aceitação, apresentou-se para todos os atributos um índice de aceitabilidade acima de 70% e, para intenção de compra, todas as notas variaram entre 4 e 5, que correspondem a (certamente compraria) e (provavelmente compraria). Conclui-se que a matéria-prima apresenta boa fonte de bioativos, principalmente o pó produzido, que concentrou 8 vezes mais esses compostos. Os testes sensoriais foram satisfatórios, apresentando boa aceitabilidade e intenção de compra. Diante disso, as características nutricionais e a bioatividade da pitaia podem agregar valor ao iogurte, proporcionando ao consumidor um novo produto biofuncional.

Palavras-chave: Bioatividade. Análise sensorial. Antioxidantes. Alimento funcional.

ABSTRACT

The red dragon fruit (Hylocereus costaricensis) is a fruit that has been commercially sought after not only by the exoticism of its appearance, but also for its organoleptic and nutritional characteristics, as well as the presence of bioactive compounds such as vitamins, phenolic compounds and pigments, which They can come to work in the body as an antioxidant agent. The atomization spray drying when associated with microencapsulation has proved a great alternative technology for processing of fruit, providing stability foods and maintaining its nutritional value. In this work we studied the optimization of the spray drying process of the red dragon fruit juice in order to develop a product rich in bioactive compounds for enrichment of a greek yogurt type. They were evaluated experimentally the physico-chemical and microbiological characteristics of the red dragon fruit pulp. For spray drying atomization studies was evaluated the influence of drying parameters: temperature (153, 160, 180 and 187 °C), feed rate (6, 7.5, 9 and 10 mL.min⁻¹) and rate of aspiration (90, 92, 95, 98, 100%) of the yield (%) of the obtained powder retention and total antioxidant (Trolox mg/g) using a compound experimental design. For the powder stability studies biotivos determinations of compounds were performed on the samples in a storage period of 90 days. The results showed optimal parameters as atomization spray drying: drying temperature of 160 °C, feed flow rate of 6 mL.min⁻¹ and 92% extraction rate. Under these conditions the maximum yield was 59,89% and the total antioxidant content was 12,35%. The stability of the powder was observed that the bioactive compounds showed significant differences (p <0.05) during the storage. The sensory tests consumption frequency of acceptance and purchase intent conducted with 120 tasters showed that approximately 72% of these had familiarity with the commercial greek yoghurt type, and relative acceptance has performed for all attributes An acceptability index above 70% and purchase intent, all grades ranged between 4 and 5, which correspond to (certainly buy) and (probably buy). It follows that the feedstock has good source of bioactive mainly the powder produced, which concentrated 8 times more such compounds. Sensory tests were satisfactory, with good acceptability and purchase intent. Therefore, the nutritional characteristics and bioactivity of dragon fruit can add value to yogurt, providing consumers with a new biofunctional product.

Keywords: Red dragon fruit. Spray drying. Bioactivity. Yogurt.

LISTA DE FIGURAS

Figura 1 - Imagem da cactácea do gênero <i>Hylocereus</i>
Figura 2 - Espécies de pitaia mais comercializadas
Figura 3 - Imagem da pitaia vermelha (Hylocereus costaricensis)24
Figura 4 - Estrutura básica dos flavonoides
Figura 5 - Estrutura das antocianinas encontradas em alimentos
Figura 6 - Esquema do <i>spray drying</i> e do fluxo do ar de secagem34
Figura 7 - Esquema de microencapsulação de compostos ativos
Figura 8 - Imagem da polpa de pitaia vermelha. Limoeiro do Norte – Ceará, 201544
Figura 9 - Filtragem do suco de pitaia vermelha. Fortaleza – Ceará, 201545
Figura 10 - Mini spray dryer modelo B-290 da Büchi® utilizados nos ensaios de atomização
do suco de pitaia vermelha46
Figura 11 - Fluxograma de processamento do iogurte tipo grego. Limoeiro do Norte - Ceará,
201552
Figura 12 - Apresentação das amostras para a realização dos testes sensoriais em cabines
individuais. Limoeiro do Norte - Ceará, 201554
Figura 13 - Curva preditos versus observados segundo o modelo quadrático para a variável
rendimento (%) de obtenção do pó de pitaia vermelha via atomização spray drying. Fortaleza
– Ceará, 201567
Figura 14 - Valores preditos versus observados pelo modelo linear para o rendimento (%) no
estudo de secagem do pó de pitaia vermelha via atomização spray drying. Fortaleza - Ceará,
201568
Figura 15 - Superfícies de contorno para o rendimento (%) dos pós de pitaia vermelha
produzidos por atomização <i>spray drying</i> . Fortaleza – Ceará, 201569
Figura 16 - Curva preditos versus observados segundo o modelo quadrático para a variável
teor de antioxidantes totais (%) na obtenção do pó de pitaia vermelha via atomização spray
drying. Fortaleza – Ceará, 201571
Figura 17 - Valores preditos versus observados pelo modelo linear versus para o teor de
antioxidantes totais no estudo de secagem do pó de pitaia vermelha via atomização spray
drying. Fortaleza – Ceará, 2015
Figura 18 - Superfícies de contorno para o teor de antioxidantes totais (TAT) dos pós de pitaia
vermelha produzidos por atomização <i>spray drying</i> . Fortaleza – Ceará, 201573

Figura 19 - Imagem do pó de pitaia vermelha obtido por atomização spray drying. Fortaleza -
Ceará, 201574
Figura 20 - Percentual de aceitabilidade da formulação# controle nos testes preliminares.
Limoeiro do Norte – Ceará, 201578
Figura 21 - Parâmetros microbiológicos das formulações de iogurte tipo grego#. Limoeiro do
Norte – Ceará, 201585
Figura 22 - Histograma do índice de aceitabilidade das formulações de iogurtes tipo grego
enriquecidas com pós de pitaia vermelha e da formulação controle. Limoeiro do Norte -
Ceará, 2015
Figura 23 - Intenção de compra para as formulações de iogurtes tipo grego enriquecidas com
pós de pitaia vermelha e da formulação controle. Limoeiro do Norte – Ceará, 201589

LISTA DE TABELAS

Tabela 1 - Componentes Nutricionais (g/100g de matéria integral) encontrados na polpa e na
casca de frutos de pitaia da espécie <i>Hylocereus undatus</i>
Tabela 2 - Componentes Nutricionais (g/100g de matéria integral) encontrados na polpa de
frutos de pitaia da espécie <i>Hylocereus costaricencis</i>
Tabela 3 - Teor de flavonoides em alimentos consumidos diariamente na dieta humana30
Tabela 4 - Domínio experimental das variáveis estudadas na otimização do processo de
secagem da pitaia vermelha (<i>Hylocereus costaricensis</i>). Fortaleza – Ceará, 201547
Tabela 5 - Matriz de experimentos usada na otimização da produção de pó de pitaia vermelha
por atomização <i>spray drying</i> . Fortaleza – Ceará, 2015
Tabela 6 - Condições experimentais para avaliação dos efeitos da temperatura de secagem
$(T_{\it Entrada})$, vazão de alimentação $(Q_{\it alim.})$ e fluxo de ar de secagem $(Q_{\it asp.})$ na atomização $\it spray$
drying do suco de pitaia vermelha. Fortaleza – Ceará, 2015
Tabela 7 - Características físico-químicas da pitaia vermelha usada como matéria-prima para
obtenção do pó de pitaia. Limoeiro do Norte – Ceará, 2015
Tabela 8 - Avaliação microbiológica de pitaia vermelha quanto à pesquisa de Salmonella ssp.
Limoeiro do Norte – Ceará, 2015
Tabela 9 - Avaliação microbiológica de pitaia vermelha (Hylocereus costaricensis) quanto à
contaminação com coliformes totais e coliformes termotolerantes. Limoeiro do Norte — Ceará,
201565
Tabela 10 - Avaliação dos efeitos da temperatura de secagem ($T_{\it Entrada}$), vazão de alimentação
$(Q_{alim}.)$ e fluxo de ar de secagem $(Q_{asp.})$ na atomização $spray\ drying$ do suco de pitaia
vermelha segundo um planejamento fatorial composto. Fortaleza – Ceará, 201566
Tabela 11 - Características físico-químicas do pó de pitaia vermelha microencapsulado obtido
por atomização <i>spray drying</i> . Fortaleza – Ceará, 2015
Tabela 12 - Resultados de estabilidade dos compostos bioativos durante 90 dias de
armazenamento. Fortaleza – Ceará, 2015
Tabela 13 - Caracterização físico-química das formulações de iogurte tipo grego (controle e
enriquecido). Limoeiro do Norte – Ceará, 201579
Tabela 14 - Parâmetros microbiológicos das formulações de iogurte tipo grego#. Limoeiro do
Norte – Ceará, 2015
Tabela 15 - Pontuação média no teste de aceitação dos atributos das formulações de iogurte
tipo grego [#] Limoeiro do Norte – Ceará 2015

LISTA DE ABREVIATURAS E SIGLAS

AT – Acidez titulável

ATT – Atividade antioxidante total

ANVISA – Agencia Nacional de Vigilância Sanitária

ABNT - Associação Brasileira de Normas Técnicas

CNNPA – Comissão Nacional de Normas e Padrões para Alimentos

cP - Centipoise

DIC – Delineamento inteiramente casualizado

IA – Índice de aceitabilidade

MAPA - Ministério da Agricultura, Pecuária e Abastecimento

NMP – Número mais provável

SS – Sólidos solúveis

TAT – Teor de antioxidantes totais

TEAC – Atividade antioxidante equivalente a trolox

UV – Ultravioleta

UFC – Unidades formadoras de colônias

SUMÁRIO

1 INTRODUÇÃO	17
2 OBJETIVOS	20
2.1 Geral	20
2.2 Específicos	20
3 REVISÃO BIBLIOGRÁFICA	21
3.1 A pitaia	21
3.2 Valor nutricional da pitaia	23
3.3Mercado e potencialidades da pitaia	26
3.4 Compostos bioativos	28
3.4.1 Antioxidantes	28
3.4.2 Flavonoides	29
3.4.3 Antocianinas	30
3.5 O processo de atomização spray drying	33
3.6 Microencapsulação	35
3.6.1 Materiais encapsulantes	37
3.7Alimentos funcionais	38
3.8 Desenvolvimento de produtos alimentícios	39
3.8.1 O iogurte	39
3.8.1.1 Iogurte tipo grego	42
4 MATERIAL E MÉTODOS	43
4.1 Material	43
4.1.1 Matérias-primas	43
4.2 Metodologias experimentais	43
4.2.1 Obtenção da polpa de pitaia vermelha	43
4.2.1.1 Obtenção do suco de pitaia vermelha	44
4.2.2 Estudos de atomização spray drying do suco diluído de pitaia vermelha	45
4.2.3 Estabilidade (vida de prateleira) do pó de pitaia vermelha	50
4.2.4 Elaboração e análise sensorial do iogurte tipo grego	51
4.2.4.1 Testes preliminares para produção do iogurte base	51
4.2.4.2 Elaboração do iogurte tipo grego	51
4.2.4.3 Análise sensorial dos iogurtes	53

4.2.5 Determinações analíticas	55
4.2.5.1 Umidade	55
4.2.5.2 Sólidos totais (ST)	55
4.2.5.3 Sólidos Solúveis (SS)	55
4.2.5.4 Acidez titulável	55
4.2.5.4.1 Acidez titulável na matéria-prima (pitaia) e pó de pitaia vermelha	55
4.2.5.4.2 Acidez titulável na matéria-prima (leite) e iogurte tipo grego	56
4.2.5.5 pH	56
4.2.5.6 Vitamina C	56
4.2.5.7 Cinzas	56
4.2.5.8 Proteínas	56
4.2.5.9 Higroscopicidade	57
4.2.5.10 Solubilidade	57
4.2.5.11 Açúcares totais em glicose	57
4.2.5.12 Fibra bruta	58
4.2.5.13 Teor de flavonoides amarelos e Antocianinas Totais	58
4.2.5.14 Atividade antioxidante pelo método do radical ABTS*+	58
4.2.5.15 Determinação do teor de gordura	59
4.2.5.16 Viscosidade	60
4.3 Análises microbiológicas	60
5 RESULTADOS E DISCUSSÃO	61
5.1 Caracterização físico-química da pitaia vermelha	61
5.2 Caracterização microbiológica da pitaia vermelha	64
5.3 Estudos de atomização spray drying do suco de pitaia vermelha	65
5.3.1 Avaliação do rendimento de produção do pó de pitaia vermelha por spray drying.	67
5.3.2 Avaliação do teor de antioxidantes totais na produção do pó de pitaia vermel	ha por
spray drying	70
5.3.3 Caracterização do pó de pitaia vermelha produzido por atomização spray drying.	74
5.4 Estudos de estabilidade dos compostos bioativos do pó de pitaia vermelha	76
5.5 Produção e caracterização do iogurte tipo grego enriquecido com pó de	pitaia
vermelha	78
5.5.1 Testes preliminares	<i>7</i> 8
5.5.2 Caracterização físico-química do iogurte tipo grego	79

5.5.3 Caracterização microbiológica do iogurte tipo grego	82
5.5.4 Análise sensorial do iogurte tipo grego	84
5.5.4.1 Caracterização dos provadores	84
5.5.4.2 Frequência de consumo de iogurte comercial tipo grego	85
5.5.4.3 Teste de aceitação	85
5.5.4.4 Índice de aceitabilidade	87
5.5.4.5 Intenção de compra.	89
CONCLUSÕES	91
SUGESTÕES PARA TRABALHOS FUTUROS	92
REFERÊNCIAS	93
ANEXOS	105

1 INTRODUÇÃO

Inúmeros fatores afetam a qualidade da vida moderna, de forma que a população deve, cada vez mais, conscientizar-se da importância do consumo de alimentos contendo substâncias que auxiliem a promoção da saúde, proporcionando, assim, uma melhora no estado nutricional (MORAES; COLLA, 2006). Com isso, os avanços da ciência e a propagação de informações acerca de propriedades nutricionais dos alimentos e suas potenciais ações benéficas à saúde humana, aliadas ao tratamento e prevenção de doenças, têm despertado o interesse não só da população que procura esses alimentos, mas também da indústria alimentícia (CASTRO, 2015).

Nessa vertente, muitos estudos mostram a necessidade de se produzir alimentos, que sejam concomitantemente funcionais e nutricionalmente ativos, já que o interesse por produtos saudáveis vem crescendo no mundo todo, principalmente o interesse pelos alimentos funcionais, assim denominados por serem capazes de fornecer benefícios pela alimentação e reduzir o risco de doenças (SANTANA et al., 2012; BALDISSERA et al., 2011; RAMOS et al., 2009).

O consumo de frutas tem aumentado, principalmente devido ao seu valor nutritivo e ao seu potencial terapêutico, relacionado a baixos índices de doenças crônico-degenerativas. Alguns frutos contêm diferentes compostos fitoquímicos, com propriedades antioxidantes, que podem estar relacionados à prevenção de câncer, doenças cardíacas e pulmonares, bem como também a problemas relacionados ao envelhecimento. Nesse contexto, frutas tropicais exóticas têm sido consideradas promotoras da saúde e peças-chave na promoção da qualidade de vida (CASTRO, 2015; OLIVEIRA, 2014; LIMA et al., 2002).

O Brasil é o terceiro maior produtor mundial de frutas, ficando atrás apenas da China e Índia, com uma área cultivada de cerca de 2,8 milhões de hectares (COSTA, 2010). No ano de 2011, o Brasil teve uma produção de 42.101 milhões de toneladas em 2,2 milhões de hectares distribuídos por todo o país, referentes a apenas 20 espécies de frutas. Entretanto a fruticultura no Brasil possui um potencial ainda maior, já que as condições climáticas em diversas regiões, bem como sua grande área territorial, permitem que haja produção de frutas o ano todo, seja em clima tropical, subtropical ou temperado (DUARTE, 2013).

Segundo o Instituto Brasileiro de Frutas (2015), o país atualmente é capaz de abastecer o mercado interno com 21 milhões de toneladas de frutas e exportar o restante produzido. Entre 2005 e 2006, o valor bruto da produção de frutas atingiu cerca de 16,3

bilhões de reais, 16,5% do valor da produção agrícola brasileira. Só na zona tropical, existem aproximadamente 3.000 cultivares de frutas comestíveis, dos quais, cerca de 920 são nativos da América, sendo apenas 50 espécies conhecidas pela população e somente 12 significativamente exploradas. Mesmo com tamanha variedade e disponibilidade, a fruticultura enfrenta alguns problemas, e um dos que mais preocupa se refere às perdas de produção. No Brasil, calcula-se que ocorram perdas de quase 40% da produção, e, dependendo da espécie, se esta for mais perecível, esse índice pode ser ainda maior (DUARTE, 2013; COSTA, 2010).

A pitaia é uma fruta originária da América Tropical e Subtropical, rica em carboidratos, vitamina A, ferro, zinco e fibras, sendo ainda uma fonte de vitamina C. Acredita-se que ela ajude a diminuir as taxas de colesterol, bem como, por ser rica em antioxidantes, também auxilie a saúde da pele e o combate a processos inflamatórios diversos. As sementes de pitaia são ricas em ácidos graxos essenciais, principalmente os ômega-3 e a casca carrega grandes quantidades de magnésio e cálcio. Outro benefício que vem sendo relacionado com a fruta é o poder de regular os níveis de açúcar no sangue, embora sejam poucos os estudos que comprovem esta funcionalidade (CASTRO, 2015; RIBEIRO, 2013).

A fruta, que é conhecida como "fruta do dragão", entrou no ano de 2013 para o ranking das superfrutas ao lado do açaí e da romã (RIBEIRO, 2013). E dentre os compostos bioativos presentes na pitaia destacam-se os compostos fenólicos, que são metabólitos secundários de plantas, os quais interferem na qualidade sensorial de produtos de origem vegetal. Esses compostos estão presentes principalmente em frutas e legumes, pois são formados pela associação das matrizes alimentares de vegetais e atuam como mecanismo de defesa da planta contra condições ambientais adversas, estresses e patógenos. Assim, fenóis, ácidos fenólicos e seus derivados, flavonoides, tocoferóis, fosfolipídios, aminoácidos, ácido fítico, ácido ascórbico, pigmentos e esteróis pertencem a uma vasta classe de compostos que possuem atividade antioxidante (ABU BAKAR et al., 2009).

Por outro lado, levando-se em consideração a elevada produção de frutas no país e as grandes perdas de produção, faz-se necessária a aplicação de técnicas de processamento que venham a diminuir esses números e que melhorem a qualidade do alimento ofertado. Dentre essas técnicas podem-se citar os processos de desidratação ou secagem, que tem por finalidade remover a água parcial ou totalmente do alimento (FELLOWS, 2006).

Diante disso, considerando que atualmente os consumidores buscam alimentos mais saudáveis e de rápido preparo, a desidratação de frutas para a utilização em diversos alimentos como meio de enriquecimento, desponta como uma ótima alternativa e de grande

potencialidade econômica. Dessa forma, o processo de secagem via atomização *spray drying* surge como uma técnica bastante adequada e rápida, já que esse processo auxilia na conservação de substâncias termossensíveis presentes nos frutos, transformando-os em pó (ALMEIDA, 2012; FERRARI et al., 2012).

Nesse contexto, este trabalho visa produzir um alimento inovador (iogurte) adicionado de pó de pitaia vermelha (*Hylocereus costaricensis*), que ofereça ao consumidor qualidade, praticidade, propriedades nutracêuticas e funcionais e riqueza em compostos bioativos. A pesquisa se faz relevante tendo em vista que não há no mercado um produto que agregue potencial antioxidante ao iogurte natural, principalmente se esta propriedade for provinda de uma fruta pouco cultivada na Região Nordeste e que se desenvolve em condições climatológicas adversas como a do semiárido cearense.

2 OBJETIVOS

2.1 Geral

Produzir por atomização *spray drying* pó de pitaia vermelha (*Hylocereus costaricensis*) para enriquecimento de iogurte tipo grego visando dotá-lo de características biofuncionais.

2.2 Específicos

- Realizar caracterização da composição da pitaia vermelha e do pó obtido por processamento spray drying de sua polpa.
- Avaliar os aspectos microbiológicos da pitaia vermelha
- Avaliar as propriedades físico-químicas e a estabilidade do pó de pitaia vermelha produzido por processamento spray drying.
- Otimizar, via planejamento fatorial, a atomização spray drying do suco de pitaia vermelha considerando os parâmetros de temperatura de secagem, vazão de alimentação (pump) e taxa de aspiração.
- Elaborar em escala laboratorial iogurte tipo grego adicionado de pó de pitaia vermelha.
- o Avaliar parâmetros físico-químicos e microbiológicos do iogurte tipo grego enriquecido com pó de pitaia vermelha bem como sua formulação controle.
- Realizar análise sensorial das formulações do iogurte tipo grego controle e enriquecido de pó de pitaia vermelha quanto aos aspectos de sua aceitabilidade, frequência de consumo e intenção de compra.

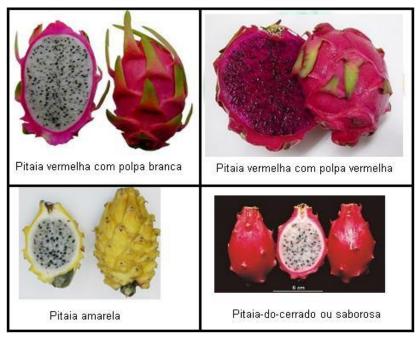
3 REVISÃO BIBLIOGRÁFICA

3.1 A pitaia

Devido à grande procura dos produtores rurais por alternativas de novas culturas, bem como dos consumidores por frutas que sejam exóticas e nutritivas, o mercado de frutas tem crescido consideravelmente nos últimos anos. A pitaia vermelha (*Hylocereus costaricensis*) vem sendo procurada não apenas pelo exotismo de sua aparência, como também por suas características organolépticas e nutritivas, muito embora os consumidores em geral ainda não tenham o total conhecimento das propriedades funcionais desta fruta. Os valores pagos pelo quilo da fruta, dependendo da espécie, épocas do ano e da demanda variam de 12 até 60 reais, o que constitui um grande atrativo para o cultivo comercial dessa frutífera (LIMA, 2013; ANDRADE et al., 2007).

A pitaia é uma cactácea (Figura 1) pertencente ao gênero *Hylocereus*, de alto potencial agronômico e econômico. As espécies comerciais são principalmente duas: a de casca vermelha (*Hylocereus undatus*) e a de casca amarela (*Selenicereus megalanthus*) (DONADIO, 2009; ANDRADE et al., 2007).

Figura 1 - Imagem da cactácea do gênero Hylocereus


Fonte: adaptado de http://antoniolst.net/htmL/Pitaia.htmL (2015).

A pitaia é uma planta originária da América e se encontra distribuída nos países da Costa Rica, Venezuela, Panamá, Uruguai, Brasil, Colômbia e México, sendo os dois últimos os principais produtores mundiais. A fruta é a cactácea frutífera mais cultivada no mundo, e possui um grande potencial culinário, já que ela pode ser consumida em forma de geleias, sucos, doces etc. Há algumas décadas era praticamente uma fruta desconhecida, mas atualmente vem ocupando muito espaço no mercado de frutas exóticas da Europa (MOREIRA; CRUZ, 2011; DONADIO, 2009).

A pitaia está agrupada em quatro gêneros botânicos: *Stenocereus* Briton & Rose, *Cereus*MiLL., *Selenicereus* (A. Beger) Riccob e *Hylocereus* Briton & Rose, sendo cada um deles determinado pelo tamanho e coloração do fruto e tempo de produção (DUARTE, 2013).

As espécies mais comercializadas são (Figura 2): *Hylocereus undatus*, *Hylocereus costaricensis*e a *Selenicereus megalanthus* (pitaia amarela com polpa branca). A espécie *Selenicereus setaceus*, que é comumente conhecida como pitaia do cerrado, é a espécie mais encontrada no Brasil, sendo facilmente reconhecida pelo tamanho bem menor do fruto e a presença de espinhos (DUARTE, 2013).

Figura 2 - Espécies de pitaia mais comercializadas.

Fonte: adaptado de http://fruticultura.webnode.com.br/news/pitaia-das-mais-diversas-formas-e-cores/(2015).

O fruto é globoso ou subgloboso, mede de 10 a 20cm de diâmetro, podendo ser de coloração amarela ou vermelha, coberto com brácteas (escamas). As sementes medem

aproximadamente 3mm de diâmetro e são muito numerosas, de coloração escura e se encontram distribuídas em toda a polpa. Alguns frutos da pitaia apresentam externamente coloração vermelha, sendo muito atrativos ao consumidor, com polpa esbranquiçada ou avermelhada, de sabor agradável, levemente adocicado, apresentando um grande número de diminutas sementes de coloração preta (ANDRADE; MARTINS; SILVA, 2005).

A polpa é a parte comestível do fruto, esta é formada por uma massa de textura mucilaginosa com pequenas sementes de coloração preta, representando de 60 a 80% do peso dos frutos maduros. Sua polpa, sem as sementes, possui um rendimento em torno de 55% do fruto, embora maiores variações possam ser encontradas entre as diferentes espécies (LIMA, 2013).

Entre as frutas exóticas que possuem grande potencial de comercialização, a pitaia, no ano de 2009, apresentou uma produção de 115 toneladas de frutos, enquanto que em 2010, até o mês de novembro, a quantidade comercializada já passava de 138 toneladas. O Sudeste do Brasil é o principal produtor de pitaia, principalmente a região de Catanduva no Estado de São Paulo, com produção de frutos nos meses de dezembro a maio e produtividade média anual de 14 toneladas de frutos por hectare (SILVA et al., 2011; MARQUES et al., 2011).

3.2 Valor nutricional da pitaia

Segundo a Tabela Brasileira de alimentos, é de fundamental importância que se tenha conhecimento sobre a composição nutricional dos alimentos, principalmente os consumidos aqui no Brasil, pois através desses dados se pode estudar a disponibilidade de nutrientes e o seu consumo por populações, bem como verificar a adequação nutricional da dieta, identificar o estado nutricional, como também desenvolver diversas pesquisas relacionadas à dieta e doenças (TACO, 2011). No entanto, o Brasil ainda precisa melhorar a caracterização de diversos alimentos aqui consumidos, principalmente os inúmeros alimentos de origem vegetal.

A pitaia é conhecida como "fruta do dragão", por causa da casca irregular e dos gomos escamosos. A pitaia vermelha (Figura 3) tem um leve sabor adocicado, que lembra o do kiwi (*Actinidia deliciosa*), possui ainda ação termogênica apresentando apenas 50 calorias em cada 100 g da fruta, o que a torna uma ótima aliada do emagrecimento. A fruta é fonte de tiramina, aminoácido que ativa o hormônio glucagon, que possui a capacidade de estimular o

organismo a utilizar os estoques de glicose e de gordura e transformá-los em energia. A pitaia é ainda fonte de vitamina C, cálcio, ferro, fósforo e potássio, contudo, a fruta ainda possui uma boa quantidade de fibras em forma de oligossacarídeos. Dentre os muitos benefícios que a pitaia pode oferecer ao consumidor, pode-se citar ainda o combate ao diabetes tipo 2, já que há uma redução da glicose no sangue, a prevenção do câncer de cólon e a redução das infecções bacterianas. As sementes contêm 50% de ácidos graxos essenciais (ômegas 3 e 6) que tem o poder de evitar doenças cardiovasculares (NUNES et al., 2014; ZOPPEI, 2014).

Figura 3 - Imagem da pitaia vermelha (Hylocereus costaricensis).

Fonte: http://www.installitdirect.com/blog/exotic-fruits-that-grow-well-in-san-diego/(2015).

Quando comparado nutricionalmente a outros frutos, a pitaia não se diferencia muito, entretanto ela está sendo alvo de estudos quanto à presença de compostos bioativos, como vitaminas, compostos fenólicos e presença de pigmentos, que se ingeridos por seres humanos podem vir a atuar no organismo como agente antioxidante inibindo ou retardando reações oxidativas de alguns substratos. O seu consumo pode prevenir doenças cardiovasculares, complicações respiratórias e circulatórias, como também combater diabetes, câncer e mal de Alzheimer (NUNES et al., 2014).

Existem, atualmente, poucos estudos que comprovem a composição dessa fruta, porém alguns autores descrevem sua composição centesimal, conforme apresentado na Tabela 1.

Tabela 1 - Componentes Nutricionais (g/100g de matéria integral) encontrados na polpa e na casca de frutos de pitaia da espécie *Hylocereus undatus*.

Componentes	Polpa	Casca
Umidade	86,08 ¹ ; 84,7 ²	86,89 ¹
Proteína	$1,87^{1}$	$0,78^{1}$
Fibra bruta	$0,31^1; 1,07^2$	4,331
Glicídios	11,821	7,811
Lipídios	$0,47^{1}$	0.08^{1}
Cinzas	$0,39^1; 0,50^3$	0.08^{1}
Açúcar redutor	$4,50^3$	-
Açúcar não redutor	$3,50^3$	-
Açúcar total	$8,00^{3}$	-

Fonte: ¹Oliveira et al. (2010); ²Mahatanatawee et al. (2006); ³Islamet al. (2012).

Na Tabela 2 estão expressos os valores correspondentes aos componentes nutricionais da espécie *Hylocereus costaricensis*.

Tabela 2 - Componentes Nutricionais (g/100g de matéria integral) encontrados na polpa de frutos de pitaia da espécie *Hylocereus costaricencis*.

Componentes	Polpa
Umidade ¹	85,521 g
Proteína ¹	1,061 g
Fibra bruta ¹	0,341 g
Ácido ascórbico (Vit. C) ²	0,0092 g
Lipídios ²	0,21 – 0,61 g
Cinzas ¹	0,361 g
Carboidratos ¹	12,341 g
Sólidos solúveis (°Brix) ³	7,00 - 11,00
pH^3	4,3 – 4,7

Fonte: ¹Oliveira et al. (2010); ²Nunes et al. (2014); ³Bellecet al. (2006).

A umidade é um dos parâmetros mais importantes dentre as análises de alimentos, tendo em vista que a água é um dos fatores que mais influencia na qualidade do alimento, já que a presença dela pode tanto solubilizar compostos presentes como vitaminas, minerais

entre outros, assim como pode influenciar em algumas características como aparência, sabor, textura, deterioração e susceptibilidade (DUARTE, 2013).

O valor comercial das frutas está diretamente relacionado às suas características químicas e físicas, sendo a primeira relacionada ao aspecto visual dos frutos e a segunda relacionada aos seus parâmetros físicos, como os sólidos solúveis e acidez titulável. Estas características são importantes devido a sua relação com o sabor do fruto. Em alguns frutos, a determinação dos sólidos solúveis é importante tanto para o consumo *in natura* como para o processamento industrial (LIMA, 2013).

3.3 Mercado e potencialidades da pitaia

Há muitas décadas, a pitaia era praticamente desconhecida, porém há relatos que os povos sul-americanos a utilizavam como remédio para o tratamento de diversas doenças, como infecções intestinais e deficiências alimentares. Alguns estudos etnobotânicos também mostram que os índios americanos também usavam essa fruta para alimentação tanto humana como animal e como medicamento. No entanto, como esses povos eram considerados pobres pelas pessoas de classe alta, a pitaia ficou durante muito tempo restrita ao comércio devido ao grande preconceito que envolvia o seu consumo por pessoas de classe baixa (NUNES et al., 2014). Embora no Brasil já existam produtores de pitaia, ainda não há disponibilidade suficiente, o que acaba acarretando na importação desses frutos, tornando-o um produto mais caro e pouco acessível a todas as classes sociais.

Atualmente, na região Sudeste do Brasil, que é a principal produtora do país, a cultura da pitaia se aclimatou muito bem, com produção de frutos nos meses de dezembro a maio e produtividade média anual de 14 toneladas de frutos por hectare (BASTOS et al., 2006). Existem diversos plantios distribuídos no Brasil, particularmente na região da Chapada do Apodi, nos municípios de Limoeiro do Norte e Quixeré, estado do Ceará, totalizando aproximadamente 15 hectares da cultura, as plantas sob irrigação produzem frutos o ano inteiro, com pequeno decréscimo nos meses mais chuvosos, que geralmente vão de janeiro a abril. A produção é geralmente comercializada nas principais redes de supermercados de Fortaleza, capital do Estado, a preços elevados (NUNES et al., 2014).

A pitaia se adapta a diversos climas, sendo eles tropicais ou subtropicais até os climas do semiárido, podendo ser cultivadas de 0 a 1.800m acima do nível do mar, com temperaturas em média de 18 a 26°C (LIMA, 2013).

Os frutos do gênero *Hylocereus* possuem mais de 25 espécies, sendo que a maioria delas apresenta a coloração branca em sua polpa, podendo variar até vermelho-púrpura. As frutas que possuem a polpa vermelha são as mais bem aceitas no mercado externo. Entretanto, no Brasil, os consumidores mostram preferência pela fruta que possui a polpa branca. A pitaia é um fruto de tamanho médio, apresentando aproximadamente 350 a 450g, no entanto alguns podem chegar até 1.100kg (LIMA, 2013).

A pitaia de casca amarela e polpa branca (*Selenicereus megalanthus*), originária da Colômbia, possui uma produção anual de aproximadamente 14 toneladas por hectare, já a pitaia de casca vermelha e polpa branca (*Hylocereus undatus*) produz, anualmente, aproximadamente 30 toneladas por hectare. Produtores do Vietnã, utilizando um sistema de condução da planta com utilização adequada de podas, promoveram aumento da brotação de novos calódios na planta e, consequentemente, um aumento significativo de flores e frutos, conseguindo obter uma produção de até 40 toneladas de frutos por hectare (LIMA, 2013; BELLEC et al., 2006).

Como no Brasil a pitaia ainda é pouco conhecida, seu comércio ainda é baixo, porém alguns fruticultores brasileiros estão investindo nesse plantio, já que esse fruto apresenta boa aceitabilidade pelos consumidores e possui alto valor comercial, principalmente a que apresenta casca vermelha e polpa branca. Catanduva, em São Paulo, é considerada hoje a região com maior produção, mas outras regiões brasileiras já começaram a produzir essa espécie, como também a espécie de casca amarela, a de casca e polpa vermelha e a pitaia-docerrado (DUARTE, 2013).

A pitaia-do-cerrado é a espécie que possui um maior potencial de aproveitamento culinário, já que apresenta características sensoriais marcantes, as quais são bastante apreciadas pelos consumidores, além de ser rica em vitaminas e minerais e ser pouco calórica, mas por ser um fruto que possui bastantes espinhos finos e rígidos aderidos a sua casca, seu manuseio acaba sendo mais complicado (DUARTE, 2013; RODRIGUES, 2010).

Os muitos fatores positivos que envolvem a pitaia despertam a atenção não só dos consumidores, mas do mercado nacional e internacional, principalmente pelos Estados Unidos e Europa, que são os maiores responsáveis hoje pela maior parte da produção mundial (NUNES et al., 2014).

3.4 Compostos bioativos

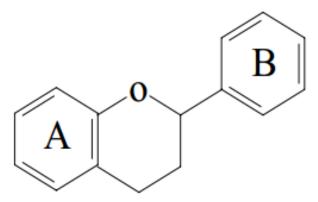
Os compostos bioativos são considerados substâncias não nutricionais, sendo considerados fundamentais para a manutenção da saúde humana. Muitos desses compostos já foram identificados e despertaram o interesse devido aos seus poderes antioxidantes, anticancerígenos e anti-inflamatórios (CAMMERER, 2012).

3.4.1 Antioxidantes

Antioxidantes são quaisquer substâncias que em baixas concentrações podem impedir ou diminuir a oxidação de moléculas, inibindo a iniciação ou a propagação da oxidação. Dentre esses compostos, destacam-se os compostos fenólicos que são considerados os metabólitos secundários de plantas, agindo como sequestradores de radicais livres, bem como bloqueadores de reações em cadeia. Esses compostos são formados por grupos hidroxilos em anéis aromáticos ou com apenas um anel de fenol, podendo ser encontrados em frutas e legumes (COSTA, 2010; ABU BAKAR et al., 2009).

Os principais compostos fenólicos que possuem atividade antioxidante são os fenóis, ácidos fenólicos e seus derivados, flavonoides, tocoferóis, fosfolipídios, aminoácidos, ácido fítico, ácido ascórbico, pigmentos e esteróis. Dentre os polifenóis destacam-se os flavonoides amarelos que são considerados pigmentos naturais e ainda desempenham um importante papel como protetor dos vegetais, devido ao seu potencial antioxidante (LIMA, 2013; ABU BAKAR et al., 2009).

Os alimentos que possuem ação antioxidante são fundamentais para a saúde, já que há indícios de que estes podem reduzir o risco de doenças cardiovasculares e câncer. A atividade antioxidante se mostra hoje como um dos parâmetros de qualidade de frutas, já que essa propriedade tem poder de combater o envelhecimento e diversas doenças uma vez que esses compostos são capazes de diminuir a concentração de radicais livres (DUARTE, 2013; COSTA, 2010).


Segundo Rufino et al. (2007), o interesse por antioxidantes naturais tem aumentado e despertado o interesse não só dos consumidores, mas também da comunidade científica, em especial os que estão presentes em frutas e vegetais, já que a indústria farmacêutica vem estudando seus efeitos e mostrando que há uma ligação entre o consumo e o baixo risco de desenvolvimento de doenças degenerativas.

3.4.2 Flavonoides

O termo flavonoide é derivado do latim "flavus" que significa "amarelo". Os flavonoides são considerados os compostos bioativos mais importantes nos produtos de origem vegetal, podendo ser encontrados em frutas, vegetais, sementes, flores e casca de árvore, identificados mais de 8000 compostos fenólicos só em plantas. O termo flavonoide se dá devido à presença dos pigmentos derivados da benzo-g-pirona. Como o organismo humano não produz substâncias químicas que o protejam da ação dos agentes oxidantes, o homem deve consumir alimentos que possuam essa característica. Flavonoides apresentam diversas propriedades medicinais, tais como ações antialérgica, anticarcinogênica e antioxidante (LIMA, 2013; VOLP et al., 2008; BEHLING et al., 2004).

Na classe de pigmentos naturais, os flavonoides ocupam uma importante posição, e sua estrutura básica possui um núcleo constituído de 15 átomos de carbono em seu esqueleto básico, arranjado em três anéis (C6-C3-C6), sendo que duas partes da molécula de seis carbonos são anéis fenólicos substituídos (A e B) e um pirano (cadeia heterocíclica) acoplado ao anel (A) como mostra a Figura 4 (VOLP et al., 2008; DORNAS et al., 2007). Cada fenol está ligado à atividade antioxidante que exercem sobre determinado meio, entretanto esta atividade depende da estrutura química, sendo determinada pela velocidade que acontece a inativação do radical livre (VOLP et al., 2008).

Figura 4 - Estrutura básica dos flavonoides.

Fonte: VOLP et al. (2008).

Na pitaia vermelha, os flavonoides são os compostos que aparecem em maior concentração, contendo na casca 16 mg/g e na polpa 9,56 mg/g equivalentes de rutina. Já na pitaia de polpa branca, os flavonoides aparecem em 14,33 mg/g na polpa e na casca 3,52 mg/g equivalentes de rutina (DUARTE, 2013).

Os flavonoides são componentes importantes na dieta humana, muito embora eles não sejam considerados nutrientes. A falta de uma tabela com dados que comprove a quantidade de flavonoides distribuídos nos alimentos acaba dificultando a quantificação que deve ser ingerida por humanos diariamente em sua dieta, entretanto alguns estudos têm apontando que o consumo total estimado deve variar de 26mg a 1g/dia, variando de acordo com o consumo dos alimentos fontes desses compostos, como frutas, vegetais, vinho tinto, chá preto, cerveja, grãos, nozes e outros (BEHLING et al., 2004).

De acordo com o estado de oxidação da cadeia heterocíclica do pirano, os flavonoides podem se dividir em diferentes classes, sendo elas as antocianinas, flavonóis, isoflavonas, flavononas, catequinas e flavonas, sendo o último o maior grupo. No grupo das flavonas a quercetina é a mais abundante na dieta humana. A quercetina (3,5,7,3'-4'-pentahidroxi flavona) representa aproximadamente 95% dos flavonoides totais ingeridos. O consumo diário estimado varia entre 50 a 500mg (VOLP et al., 2008; BEHLING et al., 2004).

A Tabela 3 apresenta o teor de flavonoides em diversos alimentos da dieta humana diária.

Tabela 3 - Teor de flavonoides em alimentos consumidos diariamente na dieta humana.

Alimentos	Quantidade (mg/dia)
Cereais	44
Batatas	79
Grãos e nozes	45
Vegetais e ervas	162
Cacau, colas, café, chá preto cerveja e vinho	420
Frutas e sucos	290

Fonte: Behling et al. (2004).

3.4.3 Antocianinas

Com o avanço das tecnologias e a presença de consumidores cada vez mais exigentes, formular um alimento que os satisfaçam nutricionalmente e que seja visualmente atrativo se tornou uma árdua tarefa encontrada pela indústria de alimentos, já que a expressão "comer com os olhos" é um dos fatores que mais influencia na hora do consumo, visto que

estudos mostram que consumidores associam o sabor dos alimentos as suas cores. A cor dos alimentos pode estar associada aos pigmentos naturais ou aos corantes artificiais adicionados pelas indústrias (HAMERSKI; REZENDE; SILVA, 2013).

O emprego de corantes artificiais é um assunto bastante polêmico, pois está relacionado a efeitos adversos à saúde humana. Tendo em vista essas questões, o emprego de corantes naturais tem se tornado cada dia mais frequente na indústria de alimentos e bebidas, pois essas espécies não apresentam toxidez, tornando o alimento mais seguro para o consumidor (MALLMANN, 2011).

Entre os corantes naturais, encontram-se as antocianinas, as quais são solúveis em água. As antocianinas pertencem à família dos flavonoides, metabólitos secundários responsáveis pela coloração vermelha, azul e violeta, e que podem ser vistos em frutos e flores (LATADO et al., 2008; VOLP et al., 2008).

O termo "antocianinas" é originário da junção das palavras gregas "anthos" e "kianos", que significam, respectivamente, flor e azul. Juntamente com os carotenoides, esses compostos representam a maior classe de substâncias coloridas do reino vegetal. As antocianinas estão presentes em uma grande variedade de espécies, por exemplo, às famílias Compositae, Liliaceae, Rhamnaceae, Nymphaeaceae, Lobeliaceae, Commelinaceae, Orchidaceae, Leguminosae, Ranunculaceae, Gentianaceae, entre outras (HAMERSKI; REZENDE; SILVA, 2013).

As antocianinas podem ser encontradas em plantas, flores, frutos, folhas, caules e sementes, tendo como funções: a atração de polinizadores, a dispersão de sementes, a proteção contra danos provocados pela luz UV e contra o ataque de patógenos. Esses compostos apresentam grande importância na dieta humana, uma vez que podem ser considerados como agentes terapêuticos, agindo contra doenças coronárias, câncer, estresse oxidativo e outras doenças, bem como por sua capacidade de inativar os radicais livres (MALLMANN, 2011; VOLP et al., 2008).

As antocianinas são glicosídeos que apresentam em sua estrutura química um resíduo de açúcar na posição 3, facilmente hidrolisado por aquecimento em meio ácido, resultando em açúcares e agliconas. As que são encontradas em alimentos (Figura 5) são todas derivadas das agliconas que pertencem a três pigmentos básicos: pelargonidina e cianidina de coloração vermelha e delfinidina de coloração violeta (MALLMANN, 2011; VOLP et al., 2008).

A variedade de antocianinas existentes na natureza e sua consequente diferenciação em tonalidades e cores resultam da combinação de alguns fatores como: a) a quantidade e a posição das hidroxilas na molécula; b) a ocorrência de metilação em uma ou mais hidroxilas presentes; c) a natureza, a quantidade e a posição dos açúcares ligados à estrutura da antocianina; e d) a natureza e a quantidade de ácidos ligados a esses açúcares (HAMERSKI; REZENDE; SILVA, 2013).

Figura 5 - Estrutura das antocianinas encontradas em alimentos.

$$R_1$$
 R_2
 R_3
 OH
 OH

Antocianinas	R,	R,	R,
Cianidina	OH	OH	-
Peonidina	OCH ₃	OH	-
Delfinidina	OH	OH	OH
Malvinidina	OCH ₃	ОН	OCH _a
Petunidina	OCH,	ОН	OH

Fonte: adaptado de Volp et al. (2008).

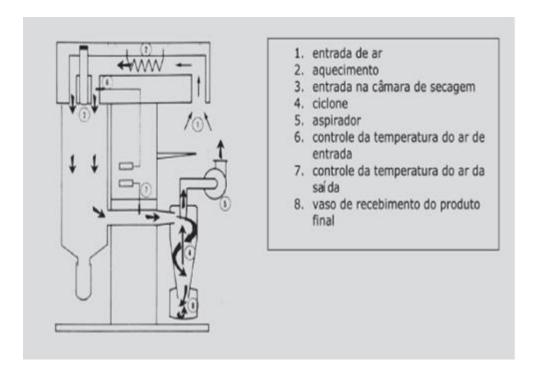
Com relação a ação antioxidante, alguns autores relatam que as antocianinas têm grande potencial fisiológico, como antineoplásicos, protetoras contra a radiação, bem como um excelente agente de retardo do envelhecimento das células. Com isso, hoje em dia são amplamente utilizadas para a produção de compostos nutracêuticos e alimentos funcionais (MALLMANN, 2011).

Nos alimentos industrializados, são utilizados como corantes naturais, já que seu pigmento de cor forte e brilhante confere ao alimento um aspecto mais atrativo. Em decorrência desses diversos fatores negativos que envolvem os corantes artificiais e a inúmeras vantagens relacionadas aos corantes naturais, se tornou evidente a redução ou eliminação total dos corantes artificias substituindo-os. Entretanto, há um grande desafio a ser

alcançado, já que esses pigmentos não são totalmente estáveis quando expostos a pH, temperaturas, luz e longos períodos de armazenagem (HAMERSKI; REZENDE; SILVA, 2013; MALLMANN, 2011).

3.5 O processo de atomização spray drying

A técnica de atomização *spray drying* vem sendo muito utilizada por diversas indústrias, sendo elas a indústria farmacêutica e a indústria de alimentos, devido a sua eficiência e rapidez na secagem de produtos. Na indústria de alimentos, o processo de microencapsulação vem sendo empregado não só para aumentar o tempo de armazenamento, mas também para melhorar a estabilidade dos alimentos e o aumento do valor nutritivo (OLIVEIRA et al., 2009).


O processo de secagem utilizando a técnica de atomização *spray drying* consiste em transformar um produto que se encontra em estado líquido para o estado sólido em pó, através de aplicação de temperatura e operação contínua. Os primeiros relatos desse processo de secagem aconteceram no ano de 1860, e a primeira patente foi datada em 1872. Segundo alguns autores, desde 1901 já se produzia leite em pó e detergente, mas só em 1930 é que a gama de produtos alimentícios atomizados aumentou com a aparição do café solúvel e ovo em pó (BARBOSA, 2010).

Para a utilização da técnica de atomização *spray drying* deve-se utilizar materiais hidrofóbicos para o encapsulamento. As cápsulas produzidas são geralmente do tipo matricial, com o núcleo distribuído na forma de micropartículas que ficam distribuídas na matriz seca do material encapsulante (AZEREDO, 2005).

Como pode ser visto na Figura 6, o processo de secagem por *spray drying* consiste em pulverizar (1) a amostra do material que será encapsulado com a matriz encapsulante para dentro de uma câmara (3) submetida a uma corrente controlada de ar quente (2). A secagem se processa enquanto o ar quente e o produto na forma de pequenas gotículas percorrem a câmara de secagem até a sua base cônica. O ar úmido e produto seco vão em seguida ao ciclone (4), onde são separados, sendo o ar úmido retirado e o produto seco na forma de pó coletado na base do ciclone (8). Com isso, o tempo de exposição das partículas ao calor é curto e a temperatura do núcleo não ultrapassa os 100°C, o que reduz a ocorrência de alterações indesejáveis em compostos termossensíveis, embora alguns

compostos de baixo ponto de ebulição possam ser perdidos (FANG; BHANDARI, 2011; MOURA, 2010; LANNES; MEDEIROS, 2003).

Figura 6 - Esquema do *spray drying* e do fluxo do ar de secagem.

Fonte: Lannes e Medeiros (2003).

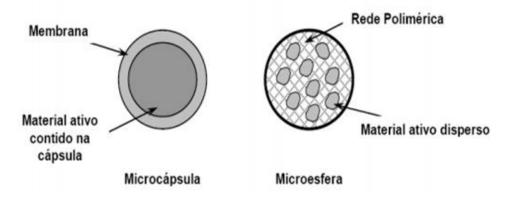
Embora essa tecnologia necessite de altos investimentos operacionais e instalações, as vantagens de se trabalhar com ela se sobressaem. Dentre estas se podem citar a produção de pequenas partículas mais consistentes, o que acaba tornando o produto altamente solúvel, bem como a facilidade em relação ao uso contínuo, a aplicabilidade da técnica em materiais termossensíveis e termorresistentes e a capacidade de processamento de diversas matérias-primas. Entretanto, há uma limitação, já que existem poucos tipos de materiais de parede que podem ser utilizados. Portanto, para que se possa usufruir das vantagens dessa tecnologia, se faz necessário que alguns aspectos sejam levados em consideração, como por exemplo, os parâmetros do processo que será realizado, qual tipo de partícula será produzida e quais as características dos materiais que serão processados (MENDES, 2012; LANNES; MEDEIROS, 2003).

O processo de desidratação de suco de frutos é um processo complicado, tendo em vista que há uma grande probabilidade de haver o aparecimento de características indesejáveis ao produto seco, como por exemplo, alta higroscopicidade e solubilidade, devido a presença

de açúcares, ácidos de baixa massa molar (frutose, glicose e sacarose) e ácidos orgânicos (málico, cítrico, tartárico), pois esses compostos possuem uma baixa temperatura de transição vítrea, podendo aderir a parede do ciclone durante o processo de secagem, causando assim um baixo rendimento do pó e possíveis problemas operacionais. Entretanto, existem alguns fatores que podem auxiliar nesse processo de secagem, como o uso de agentes encapsulantes de alto peso molecular, usado antes de ser realizada a atomização, sendo o agente (polímeros ou gomas) adicionado ao sumo e a partir daí a realização do processo. O uso desses agentes facilita o processo de secagem, bem como a conservação das substâncias presentes na fruta (FAZAELI et al., 2012, WANG; LANGRISH, 2009; TONON et al., 2009).

Barbosa (2010) afirma que as propriedades físico-químicas do pó produzido alteram-se de acordo com as variáveis envolvidas no processo de secagem, como as características do liquido de alimentação (vazão, tamanho da partícula e viscosidade), ar de secagem (temperatura e pressão) como também o tipo de atomizador. Portanto, o conhecimento das variáveis que envolvem o processo de atomização *spray drying* irá determinar a qualidade sensorial e nutricional do produto obtido.

3.6 Microencapsulação


A tecnologia de microencapsulação é um processo físico, no qual pequenas partículas sólidas ou gotículas de líquidos ou gases, denominadas "material ativo ou núcleo" são envolvidos por um material também chamado de "material de parede" ou "agente encapsulante". Esse processo vem sendo muito utilizado, já que ele proporciona ao material a ser encapsulado proteção e estabilidade dos compostos bioativos presentes (TONON et al., 2009; TANAKA, 2007).

Desde a década de 30, várias pesquisas vem sendo desenvolvidas com essa tecnologia. No ano de 1950, nos Estados Unidos, são produzidas microcápsulas de gasolina com diâmetro inferior a 5µm para fins militares com a finalidade de facilitar a estocagem e reduzir os riscos de inflamabilidade. Na mesma década foram realizados os primeiros testes de microencapsulação de bioativos, quando a indústria farmacêutica produziu os primeiros medicamentos em forma de cápsulas e tabletes. Já na indústria de alimentos, o processo teve início assim que se patenteou um processo de preparação de concentrado de óleos no estado sólido (TANAKA, 2007).

A técnica de encapsulação se diferencia da cobertura simples devido à característica de cobertura total da partícula do ingrediente ativo, já a cobertura simples cobre apenas 10% do núcleo. A microencapsulação é um processo complexo que permite incorporar ao material ativo propriedades funcionais, proporcionando ao final um produto de qualidade e eficaz (FAZAELI et al., 2012; SOUSA, 2012; TANAKA, 2007).

O processo de microencapsulação forma micropartículas que podem ser classificadas como microcápsulas se esta possuir um núcleo com o material ativo, rodeado por uma membrana composta do agente encapsulante, ou pode ser classificada como microesfera, se esta possuir o material ativo disperso por toda a matriz polimérica composta por uma matriz homogênea e, neste caso, o material encapsulado pode ser incorporado à matriz polimérica através da adsorção ou ligado covalentemente, como mostra a Figura 7.

Figura 7 - Esquema de microencapsulação de compostos ativos.

Fonte: Matté e Rosa (2013).

Atualmente, a indústria farmacêutica e a indústria de cosméticos vêm disponibilizando ao consumidor muitos produtos encapsulados, no entanto, na indústria de alimentos essa técnica ainda é pouco utilizada, já que o fator custo tende a ser uma barreira, pois a indústria alimentícia tipicamente trabalha com margens de lucro relativamente baixas, resistindo muitas vezes à adoção de novas tecnologias. Entretanto, deve-se observar que compostos como corantes naturais, aromas e compostos bioativos são altamente degradáveis, necessitando assim do uso de técnicas que possam manter suas propriedades de interesse de mercado, protegendo seus compostos da oxidação, mantendo sua estabilidade, agregando valor nutricional ao produto final, valorizando ainda mais o produto (AZEREDO, 2005).

3.6.1 Materiais encapsulantes

Os materiais encapsulantes, carreadores ou materiais de parede, são representados pelos carboidratos (maltodextrinas, amidos, xarope de milho, sacarose, dextranas e ciclodextrinas), celulósicos (carboximetilcelulose, metilcelulose e etc), gomas (Agar, acácia, carragena), lipídeos (cera, parafina e etc) e proteínas (glúten, gelatina, caseína e etc) e atuam no processo de secagem, evitando que o produto a ser encapsulado apresente um comportamento pegajoso, ou se decomponha termicamente (BARBOSA, 2010).

A composição dos materiais encapsulantes é determinante para as características finais das microcápsulas produzidas. Portanto, é fundamentalmente importante selecionar o material de acordo com suas propriedades físicas e químicas, de acordo com a técnica aplicada e o método que irá formar as micropartículas (MENDES, 2012).

Para que o encapsulante seja considerado bom para o uso, ele deve apresentar algumas características, como: facilidade de manipulação durante o processo; baixa higroscopicidade, o que evita que haja aglomeração; pouca reatividade ao material que será encapsulado; ter capacidade de selar e manter o material ativo dentro da estrutura da cápsula; apresentar boa propriedade reológica em elevadas concentrações; liberar por completo o solvente; capacidade de dispersar ou emulsificar o material ativo estabilizando a emulsão produzida; proteger o material produzido contra as diversas condições que podem afetar a qualidade, como pH, luz, oxigênio e ingredientes reativos. Deve ainda ser solúvel em solventes utilizados na indústria alimentícia, como por exemplo, a água e o etanol, não apresentar sabor desagradável e ser economicamente viável. Então, diante dessas características, o material encapsulante deve ser compatível com a técnica de secagem, contribuindo para que ela seja eficiente (MENDES, 2012; BARBOSA, 2009).

Os carboidratos são muito utilizados como agente encapsulantes de aromas, devido sua boa capacidade de absorver voláteis do ambiente ou retê-los durante o processo de secagem, bem como grande diversidade disponível e por ser economicamente viável (MENDES, 2012).

Um carboidrato muito utilizado como agente encapsulante é a maltodextrina. Ela é um polímero sacarídeo nutritivo, de cor branca, não doce, constituída por unidades D-glicose ligadas por cadeias α-1-4. Geralmente as mais utilizadas são as que apresentam a dextrose equivalente (DE) menor que 20, devido a sua baixa higroscopicidade. No processo de encapsulação, a maltodextrina além de ser economicamente viável, age como protetor do

material volátil, retendo esses voláteis em faixas de 65% a 80%, possuindo ainda efeito antioxidante (TOSONI; RODRIGUES, 2013; LANDIM, 2008).

Tonon et al. (2009) estudaram a eficácia da maltodextrina como carreador de secagem em açaí em pó obtido por atomização *spray drying* e observaram que o aumento da concentração de maltodextrina proporcionava a formação de um pó menos higroscópico e com maior retenção de compostos de interesse.

3.7Alimentos funcionais

Mais que um nicho de mercado, os alimentos funcionais estão dentro de um novo quadro visto pela indústria de alimentos, sendo utilizados em pesquisas, cujos resultados estão sendo apresentados em congressos e seminários. Esses alimentos foram lançados pelo Japão, na década de 80, através de um programa de governo que objetivava desenvolver alimentos saudáveis para uma população que apresentava idade avançada e uma grande expectativa de vida (ANJO, 2004).

A portaria n° 398, de 30 de abril de 1999, da Secretaria de Vigilância Sanitária do Ministério da Saúde do Brasil define alimento funcional como todo aquele alimento ou ingrediente que, além das funções nutricionais básicas, quando consumido como parte da dieta usual, produz efeitos metabólicos e/ou fisiológicos e/ou efeitos benéficos à saúde, devendo ser seguro para consumo sem supervisão médica (BRASIL, 1999). Portanto, os alimentos funcionais podem ser todos os alimentos ou bebidas que, consumidos na alimentação diária, podem trazer benefícios fisiológicos específicos, graças a ingredientes fisiologicamente saudáveis presentes no produto (CANDIDO; CAMPOS, 2005).

Segundo Nogueira (2015), os alimentos e ingredientes funcionais podem ser classificados como de origem vegetal ou animal, ou quanto aos benefícios que oferecem, atuando em seis áreas do organismo: no sistema gastrointestinal; no sistema cardiovascular; no metabolismo de substratos; no crescimento, no desenvolvimento e diferenciação celular; no comportamento das funções fisiológicas e como antioxidantes.

Os fatores que tem contribuído para o desenvolvimento dos alimentos funcionais são inúmeros, sendo um deles o aumento da consciência dos consumidores, que desejando melhorar a qualidade de suas vidas, optam por hábitos saudáveis. Esses alimentos devem apresentar propriedades benéficas, bem como propriedades nutricionais básicas, sendo apresentados na forma de alimentos comuns. Geralmente são consumidos em dietas

convencionais, mas demonstram grande capacidade de regular funções corporais de forma a auxiliar na proteção contra doenças como hipertensão, diabetes, câncer, osteoporose e coronariopatias (SOUZA et al., 2003).

O iogurte é considerado um alimento funcional, pois além de ser amplamente consumido devido ao seu agradável sabor, textura e propriedades nutritivas, é um alimento que pode ser enriquecido com diversos ingredientes fisiologicamente ativos, que têm como principal objetivo melhorar a sua funcionalidade e fornecer benefícios para a saúde (PENNEY et al., 2004).

3.8 Desenvolvimento de produtos alimentícios

Durante muitas décadas, o desenvolvimento de produtos como alimentos congelados, pasteurização do leite, panificação mecanizada foram os principais responsáveis pelo avanço da inovação tecnológica. Com isso, as empresas começaram a lançar novos produtos, na busca por espaço no mercado, já que o aparecimento de novas tecnologias tornou algumas empresas ociosas, obrigando-as a procurar alternativas de sobrevivência. Se por um lado existia a competição de mercado, por outro estava o consumidor cansado de consumir sempre os mesmos produtos por tanto tempo, saindo em busca de novos (MONTEIRO; MARTINS, 2005).

Segundo a Resolução CNNPA nº 12, de 1978 e Portaria nº 31 de 13 de janeiro de 1998, da Agência Nacional de Vigilância Sanitária (ANVISA), considera-se alimento enriquecido ou fortificado todo aquele alimento ao qual for adicionado um nutriente com a finalidade de reforçar seu valor nutricional, seja repondo quantitativamente os nutrientes destruídos durante o processamento do alimento, seja suplementando-os com nutrientes em nível superior ao seu conteúdo normal.

A indústria de alimentos, visando diminuição de custos operacionais, bem como facilitar o transporte, armazenamento e conservação de produtos, vem utilizando cada dia mais produtos em pó para adição em novos produtos, proporcionando aos consumidores, alternativas de alimentos mais práticos e saudáveis (SANTOS, 2014).

3.8.1 O iogurte

Tecnologicamente, muitas espécies pecuárias são exploradas para a produção de leite, mas o leite de vaca (*Bos taurus*) é o que obtém um maior destaque, sendo produzido em

todos os países do mundo. Os maiores produtores mundiais de leite são os EUA, Índia, China, Rússia, União Europeia e Brasil. No ano de 2006, o Brasil era o sétimo maior produtor mundial de leite, com 3,8% da produção (24,75 milhões de toneladas). O Brasil possui o terceiro maior rebanho leiteiro do mundo. Em relação à produtividade média nacional, a produção é muito baixa, com uma média de 100L de leite por dia por produtor rural (KOBLITZ, 2011).

O processamento do iogurte vem sendo bastante expandido no mundo todo, já que esse produto demanda de um preparo simples, mas que, ao longo dos anos, vem se modernizando. O iogurte é um produto muito apreciado e consumido por todas as faixas etárias, inclusive por crianças (SILVA; NASCIMENTO, 2007).

De acordo com a Instrução Normativa nº. 46, de 23 de outubro de 2007, do Ministério da Agricultura, Pecuária e Abastecimento (MAPA), entende-se por iogurte, yogur ou yoghurt, o produto adicionado ou não de outras substâncias alimentícias, obtidas por coagulação e diminuição do pH do leite, ou reconstituído, adicionado ou não de outros produtos lácteos, por fermentação láctica mediante ação de cultivos de microrganismos específicos. A fermentação se realiza com cultivos proto-simbióticos de *Streptococcus salivarius subsp. thermophiluse Lactobacillus delbrueckii subsp. bulgaric*us, aos quais podem acompanhar de forma complementar, outras bactérias ácido-lácticas que, por sua atividade, contribuem para a determinação das características do produto final (BRASIL, 2006).

O iogurte é um produto oriundo da fermentação do leite por dois microorganismos atuando em simbiose à temperatura entre 42°C - 45°C. O *Streptococcus thermophilus* necessita da temperatura de 37- 45°C e o *Lactobacillus bulgaricus* necessita de 42- 45°C para ocorrer a fermentação (BRASIL, 2006). O resultado do crescimento em conjunto dos dois microrganismos é o aumento no metabolismo microbiano com consequente obtenção da mesma concentração de ácido láctico e de outros metabólitos em menos tempo, comparado ao crescimento isolado dos mesmos. Desse modo, o tempo de incubação necessário para se obter iogurte é cerca de 4 horas à 42°C (ORDÓÑEZ, 2005).

Os dois microrganismos crescem juntos, embora o *Streptococcus thermophilus* cresça primeiro, diminuindo o pH, deixando o meio ácido, e com isso o *Lactobacillus bulgaricus* passa a crescer (BRASIL, 2006). O *L. bulgaricus* libera, a partir das proteínas lácteas e das caseínas, diversos aminoácidos (entre eles, valina, ácido glutâmico, triptofano e metionina) e alguns peptídeos que estimulam o crescimento de *S. thermophilus* (ORDÓÑEZ, 2005). Com o passar do tempo, cada vez mais ácido lático acumula no meio. O pH atinge valores em torno de 5,0 - 5,5, passando a inibir o crescimento do *Streptococcus salivarius*

subsp. Thermophilus, sendo o Lactobacillus delbrueckii subsp. bulgaricusmais resistente à acidez. Quando a produção de ácido lático atinge um pH de 4,3 ambas as bactérias são inibidas (BRASIL, 2006).

O iogurte é um produto lácteo ácido e sua acidez confere uma proteção natural contra as infecções no trato intestinal. O iogurte tem como propriedade benéfica proporcionar ao organismo uma melhor assimilação de determinados componentes do leite, como a lactose e proteínas (MUNCK; RODRIGUES, 2004; FERREIRA, 2001). O leite utilizado para a fabricação do iogurte deve ter uma acidez máxima de 18°D, ser isento de substâncias inibidoras, possuir sabor e aroma normal e não ser proveniente de animais doentes (BRASIL, 2006).

O iogurte é rico em bifidobactérias, que é seu composto bioativo, e tem como ação principal no organismo auxiliar na prevenção do câncer de intestino (PACHECO, 2011). Segundo Behmer (1984), o iogurte pode ser classificado em três tipos: iogurte natural (com coalhada firme); iogurte batido (com coalhada mexida) e iogurte líquido (com coalhada mexida), pronto para beber. Exceto no iogurte natural, nos outros dois tipos, com a finalidade de melhorar sua consistência, seu aspecto e para diferenciar sua composição, pode-se adicionar ingredientes como: leite em pó ou leite condensado, glicose, açúcar, gelatina, conservantes, aromatizantes. Tecnicamente pode-se ainda adicionar polpas de frutas, sucos de frutas, geleias, calda, mel, cereais entre outros componentes (FERREIRA, 2001).

Há muitos anos, os leites fermentados eram utilizados em diversos tratamentos para combater doenças que acometiam o homem, sendo elas distúrbios orgânicos, problemas estomacais, fígado e intestino, bem como eram utilizados como estimulantes do apetite, regulador da temperatura do sangue e também para melhorar a cor da pele. Devido ao seu perfil nutricional, os profissionais da área da saúde têm indicado o consumo de produtos derivados do leite, principalmente os fermentados, já que esses produtos oferecem proteínas de alto valor biológico e uma flora microbiana que é capaz de promover muitos benefícios à saúde humana (SILVA; NASCIMENTO, 2007). Segundo Santana et al. (2012 *apud* Çon 1996), o consumo e produção de bebidas lácteas tiveram seu crescimento devido à adição das frutas e aromas em iogurtes.

3.8.1.1 Iogurte tipo grego

O iogurte é um alimento rico em proteínas, cálcio, fósforo, vitaminas e carboidratos e seu consumo geralmente é associado a uma imagem positiva, por ser um alimento saudável e nutritivo, devido às suas propriedades sensoriais. O consumo também está associado à preocupação dos consumidores em se alimentarem com produtos naturais, mais saudáveis e de qualidade, e o iogurte tende a atender essas necessidades (RAMOS et al., 2009).

O iogurte concentrado vem sendo produzido por vários países e em cada um deles recebe uma nomenclatura diferente, podendo ser chamado de *labneh* (Oriente), skyr (Islandia), shrikhand (Índia) e iogurte tipo grego (Grécia e outros países). Tecnologicamente é um produto que pode ser considerado um intermediário entre o leite fermentado e os queijos não maturados, com alto teor de umidade, como queijo *quark*, *boursin* e *petit suisse*. Dentre os tipos especiais de iogurte, alguns autores citam que o processo para elaboração do iogurte tipo grego se diferencia da prática tradicional pelo processo de dessoragem em sacos de pano para pequena escala ou por centrifugação em nível industrial (RAMOS et al., 2009).

A textura do iogurte está associada a dois fatores, sendo eles a adição de sólidos e o tratamento térmico. Esses fatores interferem diretamente na característica final no perfil de textura do iogurte. Alguns ingredientes também podem interferir positivamente na firmeza quando adicionados ao leite, como, por exemplo, o leite em pó integral ou desnatado, o soro ou o concentrado proteico do soro de leite, o caseinato, o amido modificado, a pectina, a gelatina e as gomas (ANTUNES; CAZETTO; BOLINI, 2004).

4 MATERIAL E MÉTODOS

Esta pesquisa foi realizada em duas etapas: a primeira parte, envolvendo a produção do pó de pitaia vermelha, foi realizada no IFCE *Campus* Fortaleza e a segunda parte, relativa à produção do iogurte grego enriquecido, foi executada no IFCE – *Campus* Limoeiro do Norte – CE.

4.1 Material

4.1.1 Matérias-primas

As pitaias são frutos da família das cactáceas, denominados de não climatéricos. Seu valor nutricional tem despertado bastante interesse da indústria de alimentos devido à presença de seus compostos bioativos. Seu fruto é uma baga de tamanho médio, com formato globuloso e subglobuloso, apresentando uma coloração externa verde quando imatura e amarela ou vermelha quando madura, e é coberto por brácteas e algumas espécies apresentam espinhos em sua casca. A cor da polpa pode variar do branco ao vermelho-púrpura brilhante. Suas sementes são pretas e diminutas se assemelhando ao kiwi (NUNES et al., 2014).

As pitaias vermelhas utilizadas no estudo são da espécie *Hylocereus costaricensis* e foram colhidas no estágio de maturação fisiológica em pomar comercial da Fazenda FRUTACOR no município de Limoeiro do Norte (CE), localizado na região do baixo Vale do Jaguaribe (latitude Sul 5º 09' 25,80", longitude Oeste 37º 59' 13") e transportadas para a planta piloto de Frutos e Hortaliças do IFCE – *Campus* Limoeiro do Norte para processamento.

4.2 Metodologias experimentais

4.2.1 Obtenção da polpa de pitaia vermelha

Essa etapa de processamento da polpa foi realizada na Planta Piloto de Frutos e Hortaliças do IFCE – *Campus* Limoeiro do Norte – CE. As pitaias foram selecionadas por inspeção visual para retirada dos frutos indesejados (maduros, danificados etc) e devidamente

higienizadas com hipoclorito de sódio (200 mg.L⁻¹). A polpa de pitaia vermelha foi obtida usando uma despolpadeira/refinadora industrial da marca Itametal, que separa a polpa do resíduo e de outras partículas em suspensão. Em seguida, a polpa foi acondicionada em pote plástico (Figura 8) e transportada em caixa isotérmica (4°C) até o Laboratório de Tecnologia Química do Instituto Federal do Ceará (IFCE) *Campus* Fortaleza - CE.

Figura 8 - Imagem da polpa de pitaia vermelha. IFCE - *Campus* Limoeiro do Norte - Ceará, 2015.

Fonte: Autor (2015).

4.2.1.1 Obtenção do suco de pitaia vermelha

O suco de pitaia vermelha foi obtido a partir da adição de água à polpa. A diluição foi feita na proporção de uma parte de polpa para três partes de água (1/3), o que proporcionou uma boa filtrabilidade ao material. Em seguida, o suco diluído foi filtrado em tecido poliéster 60 fios (Figura 9) e finalmente centrifugado por 300 segundos a 3000rpm em uma centrífuga SL 700 da SOLAB para eliminação das quantidades mínimas de impurezas coloidais que permanecem após a filtração. O suco assim obtido foi armazenado em balões volumétricos de 1000 mL, devidamente envoltos em papel alumínio e mantido sob refrigeração (10°C) até o processamento por *spray drying*.

Figura 9 - Filtragem do suco de pitaia vermelha. IFCE - Campus Fortaleza - Ceará, 2015.

Fonte: Autor (2015).

4.2.2 Estudos de atomização spray drying do suco diluído de pitaia vermelha

A etapa de secagem do suco de pitaia vermelha realizou-se no Laboratório de Tecnologia Química (LTQ) no IFCE – *Campus* Fortaleza. Para a realização de secagem foi utilizado um mini *spray dryer* modelo B-290 da Büchi[®] (Figura 10) com dimensões de 60x50x110cm, 48 kg e capacidade máxima de secagem de 1L de água por hora. Todos os ensaios foram conduzidas em escoamento co-corrente utilizando-se um sistema duplo fluido com bico pulverizador de 0,7mm de diâmetro.

Nessa etapa de encapsulamento utilizou-se maltodextrina Maltogill® com grau de dextrinização 20DE (20%) fornecida pela Cargill, Uberlândia-MG-Brasil.

Figura 10 - Mini *spray dryer* modelo B-290 da Büchi® utilizados nos ensaios de atomização do suco de pitaia vermelha.

Fonte: adaptado de http://www.buchi.com/en/products/spray-drying-and-encapsulation/mini-spray-dryer-b-290-deutsch. (2015).

Tecnicamente o mini *spray dryer* utiliza o seguinte domínio de variáveis operacionais: *pump* entre 10 e 100% (2 a 35mL min⁻¹), taxa de aspiração entre 50 e 100% (20 a 35 m³.h⁻¹) e altura do rotâmetro entre 40 e 65mm (200 a 800 L.h⁻¹). Maltodextrina DE 20 foi adicionada ao suco diluído de pitaia vermelha filtrado na proporção de 20% (p/v). A mistura foi homogeneizada manualmente a 25°C até a sua completa dissolução.

A otimização do processo *spray drying* do suco de pitaia vermelha foi realizada para os parâmetros de temperatura de secagem (temperatura do ar na entrada), vazão de alimentação (*pump*) e fluxo de ar de secagem (taxa de aspiração). O fluxo de ar comprimido de 473 L.h⁻¹ (altura mínima do rotâmetro de 40mm) foi mantido constante durante todo os ensaios. Com base nisso, foi utilizado um procedimento fatorial composto por três fatores (*k*) para avaliação dos efeitos individuais e interativos entre as variáveis investigadas.

O planejamento composto é em geral formado por três partes: uma fatorial ou cúbica contendo todos os $n_{\text{fatoriais}}$ pontos de coordenadas $x_i = +1$ ou $x_i = -1$ (2^k pontos), uma

parte axial ou em estrela contendo 2k pontos com todas as coordenadas nulas, exceto uma, de valor a, e um total de n_{central} ensaios no ponto central, em que todas as variáveis são nulas (BARROS NETO et al., 2001). O valor de a se situa ente 1 e \sqrt{k} , conforme Box e Hunter (1957). Assim, com base nos trabalhos de Santos (2014), definiu-se o seguinte domínio experimental das variáveis investigadas (Tabela 4).

Tabela 4 - Domínio experimental das variáveis estudadas na otimização do processo de secagem da pitaia vermelha (*Hylocereus costaricensis*). IFCE - *Campus* Fortaleza - Ceará, 2015.

Tipo de	Fatores Codificados	<u>Valores Reais</u>		
Planejamento	(níveis)	$T_{Entrada}(^{o}C)$	Q_{Alim} (mL.m ⁻¹)	$Q_{Asp}(\%)$
Planejamento	-1,0	160	6	92
Fatorial	+1,0	180	9	98
Ponto central	0,0	170	7,5	95
Planejamento	- 1,682	153	5	90
Composto Central	+ 1,682	187	10	100

Fonte: Autor (2015).

Para a codificação das variáveis foi aplicada a seguinte relação geral:

$$VC = \frac{VR - VR(PC)}{\Delta VR} \tag{1}$$

Onde: VC é o valor codificado da variável, VR é o valor real, PC é o valor da variável no ponto central (média dos valores) e $\Delta VR = [VR(+1,0) - VR(-1,0)]/2$.

O estudo estatístico da otimização do processo de secagem da pitaia vermelha foi conduzido para uma concentração constante de maltodextrina DE 20 Maltogill de 20%, conforme descrito por Santos (2014). Além das variáveis mais importantes para o processo selecionado: temperatura de entrada (x_1), vazão de alimentação (x_2) e taxa de aspiração (x_3) escolheu-se como respostas experimentais mais representativas: o rendimento % e o teor de antioxidantes totais (TAT) em mg Trolox/g.

Segundo Box e Hunter (1957), os modelos quadrático (Equação 2) e linear (Equação 3) podem ser usados para a representação do fenômeno. O primeiro é utilizado quando a curvatura gerada é muito importante para explicar o processo (planejamento completo) e o segundo quando a resposta está em uma região da superfície de resposta em que a curvatura não é importante.

$$Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{12} x_1 x_2 + b_{13} x_1 x_2 + b_{23} x_2 x_3$$
(2)

$$Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_2 + b_{23} x_2 x_3$$
 (3)

Onde: b_0 representa o termo independente do modelo e b_{ij} representam os coeficientes determinados por análise de regressão.

Uma vez desenvolvido o modelo, a análise estatística de variância (ANOVA) foi capaz de atribuir-lhe a significância adequada. A Tabela 5 apresenta a matriz de experimentos, gerada a partir do planejamento fatorial composto tipo estrela, contendo as variáveis de entrada e as respostas experimentais para a otimização por *spray drying* da pitaia vermelha.

Tabela 5 - Matriz de experimentos usada na otimização da produção de pó de pitaia vermelha por atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.

		Variáveis	
Ensaio (nº)	\boldsymbol{x}_1	<i>x</i> ₂	<i>x</i> 3
01	-1,000	-1,000	-1,000
02	+1,000	-1,000	-1,000
03	-1,000	+1,000	-1,000
04	+1,000	+1,000	-1,000
05	-1,000	-1,000	+1,000
06	+1,000	-1,000	+1,000
07	-1,000	+1,000	+1,000
08	+1,000	+1,000	+1,000
09	-1,682	0,000	0,000
10	+1,682	0,000	0,000
11	0,000	-1,682	0,000
12	0,000	+1,682	0,000
13	0,000	0,000	-1,682
14	0,000	0,000	+1,682
15	0,000	0,000	0,000
16	0,000	0,000	0,000
17	0,000	0,000	0,000
18	0,000	0,000	0,000
19	0,000	0,000	0,000

Fonte: Autor (2015).

Os resultados foram avaliados estatisticamente através do software $Statistica~7^{\$}$, com um intervalo de confiança de 95%.

A matriz global de experimentos está apresentada na Tabela 6 a seguir:

Tabela 6 - Condições experimentais para avaliação dos efeitos da temperatura de secagem ($T_{Entrada}$), vazão de alimentação ($Q_{alim.}$) e fluxo de ar de secagem ($Q_{asp.}$) na atomização *spray drying* do suco de pitaia vermelha. IFCE – *Campus* Fortaleza – Ceará, 2015.

Tratamento	$T_{Entrada}(^{\circ}C)$	Qalim.(mL.min ⁻¹)	Qasp.(%)
1	160	6	92%
2	180	6	92%
3	160	9	92%
4	180	9	92%
5	160	6	98%
6	180	6	98%
7	160	9	98%
8	180	9	98%
9	153	7,5	95%
10	187	7,5	95%
11	170	5	95%
12	170	10	95%
13	170	7,5	90%
14	170	7,5	100%
15	170	7,5	95%
16	170	7,5	95%
17	170	7,5	95%
18	170	7,5	95%
19	170	7,5	95%

Fonte: Autor (2015).

4.2.3 Estabilidade (vida de prateleira) do pó de pitaia vermelha

A estabilidade dos compostos bioativos do pó de pitaia vermelha foi determinada a partir da identificação dos teores de atividade antioxidante pela captura do radical ABTS, flavonoides amarelos e antocianinas totais nas amostras em intervalos de 15 dias por um período de 90 dias.

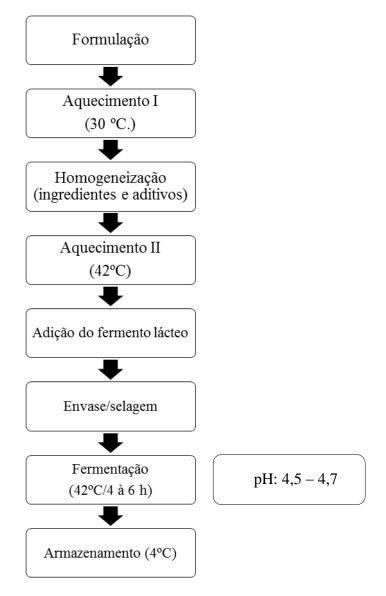
4.2.4 Elaboração e análise sensorial do iogurte tipo grego

4.2.4.1 Testes preliminares para produção do iogurte base

Em laboratório, foram realizados testes preliminares para adequação e ajuste dos ingredientes das formulações. Inicialmente foram elaboradas 3 formulações do iogurte controle ou base (sem adição do pó de pitaia vermelha) com três diferentes percentuais de edulcorante sucralose e três diferentes percentuais de leite em pó. Em todas as formulações foram adicionadas quantidades definidas de conservantes (sorbato de potássio) conforme o limite exigido pela legislação vigente. As percentagens citadas acima e as correspondentes formulações não estão reveladas em função do processo de patenteamento do produto alimentício obtido desenvolvido neste estudo de dissertação.

As formulações foram analisadas sensorialmente para o teste de aceitação para atributo sabor e textura por um grupo de 30 provadores não treinados, composto por alunos e servidores do IFCE *Campus* Limoeiro do Norte.

4.2.4.2 Elaboração do iogurte tipo grego


A elaboração do produto foi realizada na Planta de processamento de Leite e Derivados do IFCE *Campus* Limoeiro do Norte. O leite UHT foi adquirido comercialmente com 3% de gordura. As análises foram realizadas no Laboratório de análises de Leite e Derivados (LLD) e no Laboratório de Microbiologia dos Alimentos (LMA) do IFCE *Campus* de Limoeiro do Norte. O experimento foi realizado em delineamento Inteiramente Casualizado (DIC) com três tratamentos e três repetições experimentais.

Inicialmente foi realizado o preparo da cultura láctea conforme o fabricante, cultura termofílica (YO-MIXTM) 499 LYO 100DCU, contendo: *Streptococcus salivarius subesp. thermophilus e Lactobacillus delbrueckii subesp. bulgaricus*, na forma liofilizada, produzida pela empresa Danisco[®], a qual foi adicionada a 1L de leite UHT. O sistema foi homogeneizado e a mistura obtida armazenada em potes estéreis de 50mL. A conservação foi realizada a temperatura de -18°C, condição na qual os microrganismos foram mantidos até o momento do uso.

Para a produção do iogurte tipo grego enriquecido, foi utilizada a formulação controle mais aceita pelos provadores na análise sensorial durante os testes preliminares e a

partir dela foram elaboradas formulações com duas diferentes concentrações de pó de pitaia vermelha. A elaboração das formulações do iogurte tipo grego procedeu-se de acordo com a Figura 11.

Figura 11 - Fluxograma de processamento do iogurte tipo grego. IFCE - *Campus* Limoeiro do Norte - Ceará, 2015.

Fonte: Autor (2015).

Para o processamento foram preparadas as duas formulações e retiradas alíquotas de leite para posteriores análises físico-químicas. Em detalhes, o leite foi aquecido a 30°C para a adição dos ingredientes de cada formulação. A adição de leite em pó nas proporções adotadas teve por finalidade aumentar o extrato seco do iogurte, proporcionando ao final um produto mais consistente. Para as formulações ditas "enriquecidas" foram adicionadas ainda

as concentrações pré-definidas de pó de pitaia vermelha. Posteriormente, o leite foi aquecido até 42°C para a inoculação da cultura de láctea. Finalmente, o iogurte foi distribuído em embalagens plásticas de 140mL previamente higienizadas com 200ppm de hipoclorito de sódio e secas em temperatura ambiente, as quais foram fechadas com uso de uma seladora Digimec. Os iogurtes (controle e enriquecidos) foram levados à câmara de incubação modelo Memmert a 42°C por um período de 4 a 6 horas. O controle do pH foi realizado no final da fermentação. Após a fermentação, foram armazenados em geladeira a 4°C, visando interromper o processo de fermentação.

A caracterização físico-química do iogurte tipo grego base e enriquecido com pó de pitaia vermelha foi realizada através das análises de pH, acidez (% ácido lático), umidade, cinzas, gordura, proteína, carboidratos e viscosidade, conforme metodologias oficiais descritas posteriormente.

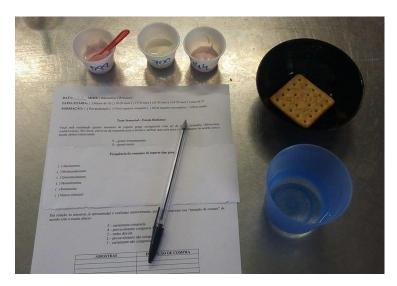
4.2.4.3 Análise sensorial do iogurte tipo grego

As formulações de iogurte tipo grego (controle e enriquecido) foram submetidas à avaliação sensorial, após a realização das análises microbiológicas, apresentando-se dentro dos padrões legais permitidos, para garantir a segurança alimentar dos provadores.

Para compor a equipe de provadores, foi elaborado um convite direto aos alunos e servidores do IFCE *Campus* Limoeiro do Norte (120 provadores) sobre o interesse e disponibilidade em participar dos testes. Antes de cada teste, os provadores foram orientados a ler e assinar um Termo de Consentimento Livre e Esclarecido, concordando em participar da análise sensorial como voluntário (Anexo III).

Os testes sensoriais aplicados foram realizados em duas etapas: teste de frequência de consumo de iogurte tipo grego de marca comercial seguido do teste afetivo de aceitação e teste de intenção de compra das amostras, segundo as normas metodológicas da Associação Brasileira de Normas Técnicas (ABNT, 1998).

Para o teste de frequência de consumo de iogurte tipo grego de marca comercial, os provadores receberam uma ficha (Anexo IV), na qual deveriam marcar a opção correspondente à frequência com que cada um consumia produtos (iogurtes tipo gregos) que já são comercializados. No teste de aceitação, os 120 provadores foram instruídos a avaliar cada amostra em relação aos atributos de cor, aroma, sabor, textura e aparência global, utilizando a escala hedônica de 9 pontos, sendo 1 corresponde a "desgostei muitíssimo" e 9


"gostei muitíssimo" (ver Anexo V). Para o teste de intenção de compra (Anexo VI), foi utilizada uma escala estruturada de 5 pontos que variava entre os termos "certamente compraria" (5) e "certamente não compraria" (1). O Índice de Aceitabilidade (I.A) para cada atributo foi calculado conforme equação abaixo:

$$I.A (\%) = (NMA \times 100)/NA$$
 (4)

Onde: I.A = índice de aceitabilidade, NMA = nota média do atributo e NA = nota mais alta observada no atributo avaliado.

As amostras de iogurte tipo grego (controle e enriquecido) de aproximadamente 30g (Figura 12) foram mantidas em refrigerador doméstico a 4°C e no momento do teste foram servidas aos provadores, em cabines individuais, em copos plásticos descartáveis codificados com números aleatórios de 3 dígitos, acompanhadas de um copo com água e um biscoito tipo "água e sal" a ser utilizado entre uma amostra e outra com a finalidade de "limpar" o paladar (DUTCOSKY, 2013).

Figura 12 - Apresentação das amostras para a realização dos testes sensoriais em cabines individuais. IFCE – *Campus* Limoeiro do Norte - Ceará, 2015.

Fonte: Autor (2015).

Os resultados obtidos foram tabulados e analisados estatisticamente através da análise de variância (ANOVA) e as médias comparadas pelo teste de Tukey ao nível de 95% de significância, utilizando o programa estatístico ASSISTAT® versão 7.7 (SILVA, 2011).

4.2.5 Determinações analíticas

As metodologias analíticas utilizadas nas diferentes fases da pesquisa estão apresentadas a seguir.

4.2.5.1 Umidade

A determinação de umidade foi realizada por evaporação em estufa à 105°C por 1h até o peso constante, sendo a primeira pesagem realizada após seis horas de dessecação e as demais a cadauma hora posterior (IAL, 2008).

4.2.5.2 Sólidos totais (ST)

O teor de sólidos totais (%) foi determinado conforme IAL (2008) através do cálculo indireto, por diferença, a partir do valor da umidade em percentagem.

4.2.5.3 Sólidos Solúveis (SS)

Na determinação de sólidos solúveis, as amostras foram diluídas na proporção de 1:3 e submetidas à leitura em refratômetro digital Atago modelo PR-100 com escala variando de 0 até 45°Brix e compensação automática de temperatura. Os valores foram expressos em °Brix e registrados com precisão de 0,1 à temperatura de 25°C, conforme método oficial do IAL (2008).

4.2.5.4 Acidez titulável

4.2.5.4.1 Acidez titulável na matéria-prima (pitaia) e pó de pitaia vermelha

A determinação de acidez titulável foi realizada utilizando aproximadamente 1g de polpa de pitaia, as quais foram diluídas para 50 mL com água destilada. Alaranjado de metila 0,2% foi usado como indicador e a titulação foi realizada com hidróxido de sódio (NaOH) 0,1M. Os resultados foram expressos em g de ácido cítrico/100g (IAL, 2008).

4.2.5.4.2 Acidez titulável na matéria-prima (leite) e iogurte tipo grego

Particularmente para a determinação de acidez titulável nas amostras de leite e de iogurte, foi utilizada a metodologia proposta por Pereira et al. (2001). Neste caso, pesou-se 5g da amostra em um erlenmeyer de 125mL e adicionou-se aproximadamente 20mL de água destilada (40-50°C). Em seguida titulou-se com a solução de hidróxido de sódio 0,1mol/L usando fenolftaleína como indicador. A acidez foi expressa em percentual de ácido lático.

4.2.5.5 pH

O potencial hidrogeniônico (pH) foi determinado diretamente na solução utilizando-se um potenciômetro digital modelo Orion Dual Star da Thermo Scientific calibrado com soluções tampões de pH 4,0 e 7,0.

4.2.5.6 Vitamina C

A vitamina C foi determinado pelo método colorimétrico com solução DFI (2,6 diclofenolindofenol 0,02%) até a coloração rósea clara permanente, conforme descrito por Stroehcker e Henning (1967). Os resultados foram expressos em miligramas de ácido ascórbico em 100g.

4.2.5.7 Cinzas

A determinação das cinzas residuais foi realizada através da carbonização das amostras em bico de Bunsen seguido de incineração em mufla Pyrotec da QUIMIS a 600°C por 6 horas conforme IAL (2008).

4.2.5.8 Proteínas

As proteínas foram determinadas através do método de Kjeldahl, a partir da digestão da amostra e conversão das formas de nitrogênio em NH3, a qual foi destilada e posteriormente titulada com HCl 0,1 N (AOAC, 1992).

4.2.5.9 Higroscopicidade

A higroscopicidade foi avaliada de acordo com a metodologia proposta por Cai e Corke (2000) e modificada por Barbosa (2010). Nesta metodologia, cerca de 1g de amostra é colocada em um dessecador contendo uma solução saturada de NaCl com umidade relativa de 75% a 25°C até que o equilíbrio hídrico seja atingido. Neste tempo, realizam-se pesagens em intervalos de 48 horas até obtenção de peso constante. A higroscopicidade foi expressa como g de umidade adsorvida por 100g de massa seca da amostra (g.100g⁻¹).

4.2.5.10 Solubilidade

A solubilidade foi determinada conforme o método de Eastman e Moore (1984), modificado por Barbosa (2010). Em 100mL de água destilada foi adicionado 1g, em base seca, do suco de pitaia vermelha em pó, o qual foi homogeneizado por 5 minutos, seguido de centrifugação a 3000rpm durante 10 minutos. Uma alíquota de 20mL do sobrenadante foi colocada em placa de Petri e então submetida à secagem em estufa, à temperatura de 75°C por 5 horas. A Solubilidade foi calculada a partir das diferenças de peso e expressa em porcentagem (%).

4.2.5.11 Açúcares totais em glicose

O teor de açúcares totais em glicose foi determinado conforme a metodologia descrita por Yemn e Willis (1954). Para a amostra foi dissolvido 0,5g de polpa de pitaia vermelha em 50mL de etanol 80% e realizada uma filtração em papel filtro. Em seguida foi retirada uma alíquota de 5mL do filtrado e transferido para um balão de 50mL e aferido com água. Após essa etapa, foi retirada uma alíquota de 200uL da solução e colocada em tubos de ensaio, adicionada a 850µL de água e por último 2mL de antrona. Os tubos foram levados ao banho-maria à 100°C por 8 minutos e resfriado em água gelada. A leitura de absorbância foi realizada em um espectrofotômetro à 620nm.

4.2.5.12 Fibra bruta

A determinação de fibra bruta foi realizada utilizando um analisador de fibras ANKOM 200 após digestões ácida e alcalina da amostra (AOAC, 1992). O material extraído foi levado à estufa à 102°C por 1 hora e depois calcinados em mufla à 550°C por 3 horas. Os pesos foram finalmente anotados e os cálculos gravimétricos realizados.

4.2.5.13 Teor de flavonoides amarelos e Antocianinas Totais

Para a determinação de flavonoides amarelos e antocianinas totais foi utilizada a metodologia de Francis (1982) com adaptações. Tomou-se 0,5g da amostra em um béquer e adicionou-se 15mL da solução de etanol- HCL 1,5N previamente preparada. A mistura foi homogeneizada com auxílio de um bastão de vidro por 2 minutos. O conteúdo foi transferido para um balão volumétrico de 25mL, envolto em papel alumínio, completando o volume final com a solução de etanol- HCL 1,5N. A mistura foi deixada na geladeira em descanso por uma noite e filtrada no dia seguinte. Após essa etapa, foi realizada a leitura em espectrofotômetro em um comprimento de onda de 374nm para flavonoides amarelos e 535nm para antocianinas totais.

4.2.5.14 Atividade antioxidante pelo método do radical ABTS⁺⁺

A realização dessa análise foi determinada pelo método de captura do radical ABTS⁺ baseado na metodologia de Rufino et al. (2007) com adaptações.

O ensaio com o radical livre ABTS foi obtido pela reação do ABTS com perssulfato de potássio. O sistema foi mantido em repouso à temperatura ambiente (±25°C) durante 16 horas em ausência de luz. Uma vez formado o radical ABTS*+ diluiu-se com etanol até obter um valor de absorbância entre 700 a 705nm. Para a determinação na amostra, pesouse 1g da fruta/pó em um béquer e adicionou-se 40mL de metanol 50%, homogeneizou-se e deixou em repouso por 60 minutos em temperatura ambiente. Após esse tempo, o extrato foi

distribuído em tubos de 50mL e levados à centrifugação por 900 segundos a 3000rpm. O sobrenadante da primeira extração foi transferidos para um balão volumétrico de 100mL. Posteriormente, adicionou-se 40mL de acetona 50%, homogeneizou-se e deixou em repouso por 60 minutos em temperatura ambiente. Após esse tempo, o extrato foi distribuído em tubos de 50mL e levados à centrifugação por 900 segundos a 3000rpm. A partir do resíduo da primeira extração, adicionou-se 40mL de acetona 70%, homogeneizou-se e deixou-se em repouso por 60 minutos à temperatura ambiente. O material foi novamente centrifugado e em seguida os extratos alcoólico e cetônico foram avolumados em balão volumétrico usando água destilada. A leitura espectrofotométrica foi realizada exatamente após 6 minutos a 734nm utilizando-se uma alíquota de 30µL de amostra e 3mL de radical ABTS*+.

4.2.5.15 Determinação do teor de gordura

A determinação do teor de gordura foi realizada pelo método de Gerber, descrito por Pereira et al. (2001). Esse método baseia-se na separação e quantificação da gordura por meio do tratamento da amostra com ácido sulfúrico e álcool isoamílico.

Para a análise, pesou-se em um béquer de 100mL, 20g da amostra e acrescentou-se aproximadamente 30mL de água destilada $40\text{-}50^{\circ}\text{C}$. Após homogeneização, transferiu-se quantitativamente para um balão volumétrico de 100mL e completou-se com água destilada à temperatura ambiente. Em seguida, transferiu-se para um butirômetro de Gerber, 10mL de ácido sulfúrico ($d_{20} = 1,825 \text{ g/L}$), ao qual se adicionou cuidadosamente 11mL da amostra e 10mL de álcool isoamílico ($d_{20} = 0,811 \text{ g/L}$). Após agitação vigorosamente da amostra contida no butirômetro foi centrifugada por 5 minutos à 1200-1400rpm. Por fim, deixou-se em banhomaria ($65\text{-}66^{\circ}\text{C}$) por 2-3 minutos e fez-se a leitura na escala própria do butirômetro, Calculando-se o teor percentual de gordura por meio da Equação 7.

$$\% G = L \times 5 \tag{7}$$

Onde:% G = teor % de gordura da amostra, em massa, e L é o teor de gordura lido no butirômetro.

4.2.5.17 Viscosidade

A viscosidade dos iogurtes tipo grego foi determinada através da metodologia descrita por Sampaio et al. (2011). As amostras destinadas à avaliação da viscosidade foram previamente homogeneizadas por 20 segundos e acondicionadas em béqueres para a realização das medidas a 10°C. Para a determinação foi utilizado um viscosímetro digital programável (Quimis, modelo Q860M) utilizando-se haste cilíndrica spindle n° 3, rotação de 0,3 rpm a 25°C por 30s. Os resultados foram expressos em centiPoise (cP).

4.3 Análises microbiológicas

As análises microbiológicas da pitaia vermelha e do iogurte tipo grego (controle e enriquecido) foram realizadas no Laboratório de Microbiologia de Alimentos do IFCE – *Campus* Limoeiro do Norte – para verificar se elas encontravam-se dentro do limite de aceitabilidade para alimentos destinados ao consumo humano, conforme estabelecido na Resolução RDC nº 12, de 02 de janeiro de 2001, da Agência Nacional de Vigilância Sanitária. Experimentalmente foram realizadas determinações de coliformes totais, coliformes termotolerantes, bolores e leveduras e pesquisa de *Salmonella spp.*, conforme descrito por Silva et al. (2010). Para análise de coliformes, utilizou-se a técnica de contagem do Número Mais Provável (NMP) utilizando o teste de diluição múltipla e detecção de presença/ausência em 25g da amostra para *Salmonella spp*.

A análise de contagem de bactérias láticas foi realizada conforme descrito por Siqueira (1995). Experimentalmente foram retirados de forma asséptica 10g da amostra e preparadas diluições sucessivas em solução salina. Em seguida, pipetou-se 1mL de cada diluição em placas de Petri esterilizadas em duplicata e adicionou-se aproximadamente 15-20mL do meio de cultura selecionado (Ágar MRS), previamente fundido e resfriado à temperatura de 44 a 46°C. Após homogeneização rigorosa, deixou-se em temperatura ambiente até a completa solidificação do ágar. Por fim, as placas foram levadas à estufa (Fanen, modelo 502 C) onde permaneceram incubadas à 37°C por 48h. Cada formulação foi analisada em triplicata.

5 RESULTADOS E DISCUSSÃO

Nesta etapa do trabalho estão apresentados os resultados da caracterização físicoquímica e microbiológica da pitaia vermelha, da obtenção do pó de pitaia por atomização spray drying e da produção e caracterização do iogurte tipo grego (controle e enriquecido), incluindo a análise sensorial dos produtos formulados.

5.1 Caracterização físico-química da pitaia vermelha

Na Tabela 7 está apresentada a caracterização físico-química da pitaia vermelha matéria-prima utilizada no processo de atomização *spray drying*. O rendimento médio de obtenção da polpa a partir dos frutos foi de 43,2%.

Tabela 7 - Características físico-químicas da pitaia vermelha usada como matéria-prima para obtenção do pó de pitaia. IFCE – *Campus* Limoeiro do Norte – Ceará, 2015.

Características	Média ± Desvio padrão
Proteínas (%)	$1,02 \pm 0,01$
Umidade (%)	$84,1 \pm 1,11$
Acidez titulável (%)	$0,\!24\pm0,\!03$
Sólidos solúveis (°Brix)	11.8 ± 0.17
pН	$4,39 \pm 0,11$
Vitamina C (mg/100g)	$0,\!48 \pm 0,\!83$
Flavonoides amarelos (mg/100g)	$6,92 \pm 0,02$
Antocianinas (mg/100g)	$15,3 \pm 0,63$
Atividade antioxidante (mg Trolox/g)	$1,63 \pm 0,01$
Fibra Bruta (%)	$7,51 \pm 0,27$
Açúcares totais (%)	$7,13 \pm 0,07$
Cinzas (%)	$0,33 \pm 0,02$
Lipídios (%)	$0,21 \pm 0,02$
Carboidratos	$7,06 \pm 0,04$

Fonte: Autor(2015).

Os resultados da Tabela 7 mostram que a pitaia vermelha é composta principalmente de água, açúcares e carboidratos (aproximadamente 98% da composição) e de

uma quantidade pequena (1 a 2%) de proteínas, cinzas e outras substâncias de teores menos relevantes.

Para o teor de proteínas, o valor obtido foi de 1,02% (Tabela 7), o qual é levemente inferior ao relatado por Bellec et al. (2006), os quais observaram em seus estudos valores de 1,2 e 1,3%. Valores próximos também foram encontrados por Sato et al. (2014), que determinaram teores de 0,88% a 1,12% de proteínas em pitaias vermelhas.

Em relação à umidade, o valor médio obtido foi de 84,1% (Tabela 7), o qual é semelhante aos valores de 87,03% a 86,99% relatados por Sato et al. (2014). Oliveira et al. (2010), por sua vez, observaram valores médios de 85,52% de umidade.

O valor observado no presente estudo para acidez titulável foi de 0,24% em ácido cítrico (Tabela 7), mostrando-se superior aos valores obtidos por Sato et al. (2014), os quais, estudando a mesma espécie, observaram valores entre 0,14 a 0,20 em % de ácido cítrico. Lima et al. (2010) obtiveram valor ainda mais baixo; 0,13 em % ácido cítrico, para a mesma espécie de pitaia estudada. A acidez resulta dos ácidos orgânicos, que influenciam parâmetros como cor, sabor, odor e na qualidade das frutas. O estádio de maturação das frutas pode ser identificado através da determinação da acidez total em relação ao conteúdo de açúcar (LIMA et al., 2013).

Chitarra e Chitarra (2005) afirmam que frutas maduras apresentam valores médios de sólidos solúveis entre 8 e 14%. Bellec et al. (2006) encontraram teores de sólidos solúveis em pitaia variando de 7 a 11°Brix, mostrando que os resultados aqui obtidos são semelhantes aos relatados na literatura. Os sólidos solúveis são usados como índice de maturidade para alguns frutos e indicam a quantidade de substâncias que se encontram dissolvidas no suco constituído, na sua maioria, os açucares (MELO, 2008).

Bellec et al. (2006) obtiveram pH da polpa da pitaia entre 4,3 a 4,7, semelhantes ao encontrado nesta pesquisa (Tabela 7), que foi de 11,8. Faleiro et al. (2010) detectaram em seus estudos com pitaias da espécie *Hylocereus undatus* que o pH médio foi de 4,87. Lima et al. (2013) também observou para o parâmetro pH um valor médio de 4,8 na espécie *Hylocereus costaricensis*. Esse parâmetro é de fundamental importância no fruto, já que esse fator pode influenciar no tempo de deterioração, através do desenvolvimento de microrganismos.

Para vitamina C foi obtido um valor de 0,48g.100g⁻¹ (Tabela 7), o qual é bem inferior aos observados, por exemplo, de 1,7g.100g⁻¹ para a acerola madura e 2,2g.100g⁻¹ para a acerola verde por Ferreira et al. (2009). Entretanto, os resultados encontrados mostram que o

consumo de 100g de pitaia de polpa vermelha supre de 23 a 27,6% das recomendações diárias de vitamina C para um homem e uma mulher adulta (ABREU et al., 2012).

Para flavonoides amarelos, a média dos valores observados no estudo foram de 6,92mg.100g⁻¹ (Tabela 7), maior que o valor observado por Lima (2013), que, estudando a espécie *H. costaricensis*, obteve valores médios de 6,03mg.100g⁻¹ de flavonoides amarelos. Wu et al. (2006) quantificaram flavonoides da polpa da espécie *H. polyrhizus* cultivada em Taiwan e encontraram uma média de 7,21mg de equivalentes de catequina/100g de polpa fresca. Dentre os polifenóis, os flavonoides amarelos são considerados pigmentos naturais e podem desempenhar uma importante função de proteção do vegetal atuando contra agentes oxidantes (LIMA, 2013).

As antocianinas apresentaram nesse estudo teores médios de 15,31mg/100g. Em pesquisa realizada por Lima et al. (2010) a espécie *Hylocereus costaricencis* apresentou teor de antocianinas alto, de 15,13mg/100g, em sua porção mediana, o qual é muito próximo ao encontrado neste estudo. As antocianinas, além de serem classificadas como corantes naturais, apresentam grande potencial antioxidante.

A atividade antioxidante total estudada apresentou valor médio de 1630μg Trolox/g, o qual é superior as 1.363,21μg de trolox/g relatados por Vizzotto et al. (2014) para a polpa de pitaia vermelha. Os compostos bioativos, em sua maioria metabólitos secundários, que, nos seres humanos, em baixas concentrações, desempenham um importante papel de proteção, sendo capazes de retardar ou inibir a oxidação de diversos substratos (VIZZOTTO et al., 2014).

Para o teor de fibra bruta (Tabela 7), obteve-se um valor médio de 7,51%. Segundo Abreu et al. (2012), em estudo realizado, os teores de fibra alimentar total na polpa da pitaia, parte usualmente comestível, é superior ao encontrado em frutas como a maçã, papaia, manga, banana e laranja. A pitaia é boa fonte de fibra alimentar, podendo contribuir para uma dieta saudável.

O valor médio observado de açúcares totais nesse estudo foi de 7,13% (Tabela 7). Wu et al. (2006) observaram valores de açúcares totais 13,9 e 10,1%, em pitaias brancas e vermelhas, respectivamente. Wichienchot et al. (2010) encontraram teor de glicose significativamente maior na pitaia vermelha e teor de frutose significativamente maior na pitaia branca. Segundo os autores, o somatório de glicose, frutose e oligossacarídeos foi semelhante entre as pitaias branca e vermelha.

Para o teor de cinzas, obteve-se um valor médio de 0,33% (Tabela 7), semelhante ao valor encontrado por Abreu et al. (2012), que foi de 0,36%. Para lipídios e carboidratos, foi

observado um valor médio de 0,21 e 7,06 respectivamente (Tabela 7). Abreu et al. (2012) afirmam que a pitaia é um alimento com baixo valor energético.

5.2 Caracterização microbiológica da pitaia vermelha

A Tabela 8 apresenta os resultados observados para a pesquisa de *Salmonella spp*. nas amostras selecionadas. A RDC n° 12, de 02 de janeiro de 2001, do Ministério da Saúde (BRASIL, 2001), estabelece limites para a contagem de coliformes termotolerantes à 45°C de 5x10² NMP/g para frutas, bem como exige ausência de *Salmonella spp*./25g.

Tabela 8 - Avaliação microbiológica de pitaia vermelha quanto à pesquisa de *Salmonella ssp.* IFCE – *Campus* Limoeiro do Norte – Ceará, 2015.

Amostra	Salmonella spp.	Legislação
A1	Ausência	
A2	Ausência	
A3	Ausência	Avaŝnaja am 25a*
A4	Ausência	Ausência em 25g*
A5	Ausência	
A6	Ausência	
A7	Ausência	

*Os resultados foram comparados com a legislação (BRASIL, 2001).

Fonte: Autor (2015).

Na Tabela 8 observa-se que não foi detectada a presença de *Salmonella ssp.* em 25g nas amostras investigadas. Esse resultado também foi observado por Santos et al. (2010) que, analisando frutas minimamente processadas, não detectaram a presença de *Salmonella ssp.* nas amostras estudadas. Pinheiro et al. (2005), em estudo realizado com amostras de frutas minimamente processadas (goiaba, manga, melão, mamão e abacaxi), comercializadas em Fortaleza, observaram até 25 % de contaminação com *Salmonella ssp.*, estando as mesmas impróprias para o consumo.

Nascimento et al. (2003), ao realizar avaliação microbiológica de frutas e hortaliças frescas, comercializadas no município de Campinas, também não detectaram *Salmonella* sp., indicando que nesse município há uma baixa incidência desses microrganismos em frutas e hortaliças.

A Tabela 9 apresenta os resultados de identificação de sete (7) amostras de pitaias previamente selecionadas quanto à contaminação com coliformes.

Tabela 9 - Avaliação microbiológica de pitaia vermelha (*Hylocereus costaricensis*) quanto à contaminação com coliformes totais e coliformes termotolerantes. IFCE – *Campus* Limoeiro do Norte – Ceará, 2015.

Amostra	Coliformes totais (NMP/g)*	Coliformes termotolerantes (NMP/g)	Legislação
A1	0.4×10^{1}	<3	
A2	1.1×10^{1}	<3	
A3	0.4×10^{1}	<3	Coliformes:
A4	0.4×10^{1}	<3	$5 \times 10^2 \text{ NMP/g}$
A5	<3	<3	
A6	0.4×10^{1}	<3	
A7	<3	<3	

Os resultados foram comparados com a legislação. RDC nº 12 de 02 de Janeiro de 2001 da ANVISA. *NMP/g = Número Mais Provável/grama.

Fonte: Autor (2015).

Na Tabela 9 verifica-se que as amostras analisadas apresentaram valores de coliformes inferiores ao limite máximo exigido pela legislação, variando de <3 a 1,1x 10¹, os quais atendem aos padrões da RDC nº 12, de 02 de janeiro de 2001, da ANVISA. Palu et al. (2002), analisando 15 amostras de frutas prontas para consumo servidas em restaurantes no Rio de Janeiro, observaram em 3 amostras de mamão e uma de melão níveis de coliformes totais entre 10³ a 10⁴ NMP.g⁻¹ e contaminação com coliformes termotolerantes em uma amostra de melão com 3,5 x 10³ NMP.g⁻¹ e outra de mamão com 2,4x 10⁴ NMP.g⁻¹.

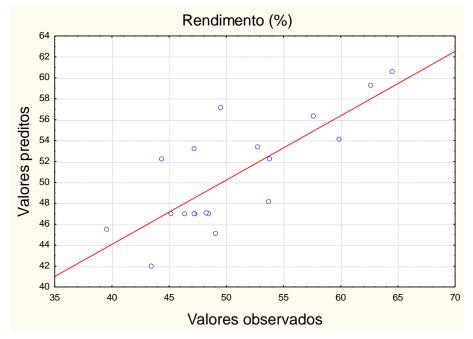
5.3 Estudos de atomização spray drying do suco de pitaia vermelha

A Tabela 10 apresenta os resultados para as respostas experimentais segundo o planejamento fatorial composto para a otimização *spray drying* do suco de pitaia vermelha. O rendimento médio de obtenção do suco de pitaia vermelha após filtração para a realização dos ensaios de secagem foi de 73% e as perdas por centrifugação foram consideradas desprezíveis.

Tabela 10 - Avaliação dos efeitos da temperatura de secagem ($T_{Entrada}$), vazão de alimentação (Q_{alim} .) e fluxo de ar de secagem ($Q_{asp.}$) na atomização *spray drying* do suco de pitaia vermelha segundo um planejamento fatorial composto. IFCE – *Campus* Fortaleza – Ceará, 2015.

Tratamento	$\mathbf{T}_{Entrada}$	Qalim.	Qasp.	Rendimento	TAT
	(° C)	$(mL.min^{-1})$	(%)	(%)	(mg Trolox/g)
1	160	6	92%	59,89	12,35
2	180	6	92%	47,18	9,65
3	160	9	92%	39,54	10,00
4	180	9	92%	53,73	10,35
5	160	6	98%	49,55	11,00
6	180	6	98%	64,56	10,65
7	160	9	98%	49,10	11,65
8	180	9	98%	44,41	11,35
9	153	7,5	95%	48,29	9,67
10	187	7,5	95%	53,78	10,82
11	170	5	95%	57,62	11,05
12	170	10	95%	43,45	11,06
13	170	7,5	90%	52,79	11,17
14	170	7,5	100%	62,70	11,72
15	170	7,5	95%	48,50	11,25
16	170	7,5	95%	46,36	11,66
17	170	7,5	95%	47,30	11,11
18	170	7,5	95%	45,20	10,76
19	170	7,5	95%	47,20	11,28

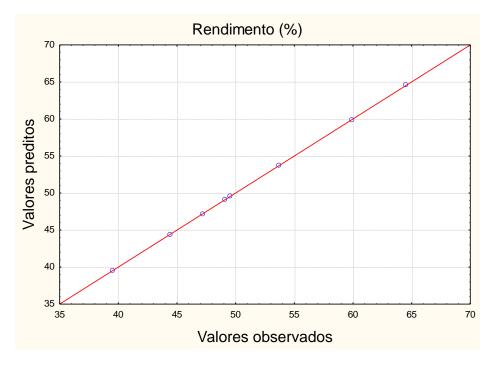
Fonte: Autor (2015).


Na Tabela 10, tomando como base as respostas experimentais obtidas, obteve-se maior rendimento do pó de pitaia vermelha no ensaio 6, no qual foram utilizados valores de: 180°C de temperatura (T_{entrada}), 98% de taxa de aspiração (Q_{asp}) e 6mL.min⁻¹ de vazão de alimentação (Q_{alim}), correspondente a 64,56% de obtenção. Entretanto, nestas condições, o teor de antioxidantes totais (10,65mg Trolox/g) apresentou reduções de aproximadamente 15% em relação ao teor máximo de 12,35 mg Trolox/g observado no ensaio 1. As reduções de rendimento são explicadas neste caso em função da obtenção de uma carga mais úmida de pó produzida nesta condição de processamento, o que favorece a aglomeração das partículas e a adesão às paredes do secador.

A análise detalhada dos efeitos das variáveis experimentais sobre as respostas: rendimento (%) e teor de antioxidantes totais (TAT), segundo o planejamento fatorial adotado, está apresentada a seguir. A curva padrão de trolox utilizada para calcular os teores de antioxidantes totais no suco de pitaia vermelha atomizado pode ser vista no Anexo I

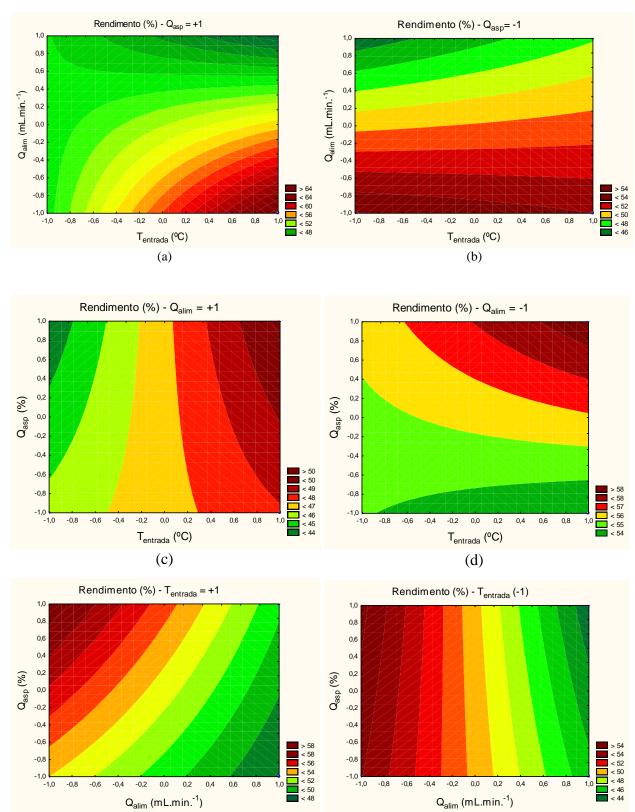
5.3.1 Avaliação do rendimento de produção do pó de pitaia vermelha por spray drying

A análise estatística dos resultados para a aplicação do modelo de segunda ordem mostrou a inconsistência deste para a interpretação do processo em estudo, haja visto o baixo coeficiente de correlação encontrado (R² = 0,6148) na análise de variação (ANOVA) para o rendimento % (Anexo IIa deste trabalho). O perfil comparativo entre os resultados previstos *versus* resultados observados mostra, em geral, uma grande dispersão dos resultados experimentais (Figura 13).


Figura 13 - Curva preditos *versus* observados segundo o modelo quadrático para a variável rendimento (%) de obtenção do pó de pitaia vermelha via atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.

Fonte: Autor (2015).

A falta de ajuste ao modelo quadrático permite a descrição do fenômeno somente a partir da parte fatorial do planejamento, justificando a aplicação de um modelo de primeira ordem, conforme a Equação 3. Os resultados para a curva de preditos *versus* observados nesta condição (experimentos 1 a 8) estão apresentados na Figura 14.


Figura 14 - Valores preditos *versus* observados pelo modelo linear para o rendimento (%) no estudo de secagem do pó de pitaia vermelha via atomização *spray drying*. IFCE – *Campus* Fortaleza - Ceará, 2015.

Fonte: Autor (2015).

A Figura 14 apresenta um ajuste ideal ao modelo linear entre os valores experimentais e calculados, mostrando a significância de todas as variáveis investigadas para a definição do rendimento experimental. A Figura 15 apresenta as superfícies de contorno conforme o modelo linear para as respostas experimentais relacionadas ao rendimento (%) do pó de pitaia vermelha produzido por *spray dryng*.

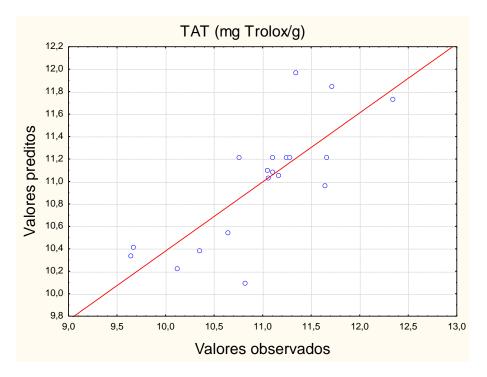
Figura 15 - Superfícies de contorno para o rendimento (%) dos pós de pitaia vermelha produzidos por atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.

(f)

Fonte: Autor (2015).

(e)

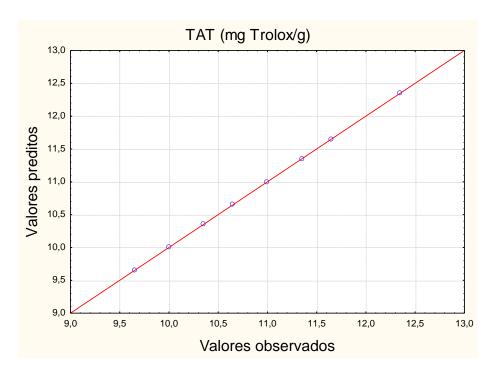
Pode-se observar nas Figuras 15a e 15b que o rendimento do pó de pitaia vermelha é favorecido em valores mais elevados da temperatura e menores valores de vazão de alimentação, independente da taxa de aspiração (Q_{asp}). Para o efeito da vazão de alimentação (Figuras 15c e 15d) observam-se maiores rendimentos para níveis mais altos de temperatura e de taxa de aspiração, operando no nível mais baixo da vazão (6mL/min), os quais são superiores aos encontrados em maiores fluxos de alimentação.


O uso de temperaturas mais altas implica em uma maior taxa de transferência de calor para as partículas, o que leva a uma maior evaporação de água do produto, resultando em pós com umidade mais baixa (SANTOS, 2014).

Os resultados desta parte do estudo, utilizando uma análise fatorial simples, evidenciaram que o melhor rendimento de pó de pitaia vermelha produzido por atomização spray drying deve ser obtido no experimento em que a temperatura e a taxa de aspiração sejam maiores e que a vazão de alimentação seja menor. Pelo exposto, pode-se perceber que o planejamento fatorial não determina valores ótimos em uma única etapa, porém este procedimento indica satisfatoriamente o caminho a ser tomado para que se possa atingir o objetivo proposto.

5.3.2 Avaliação do teor de antioxidantes totais na produção do pó de pitaia vermelha por spray drying

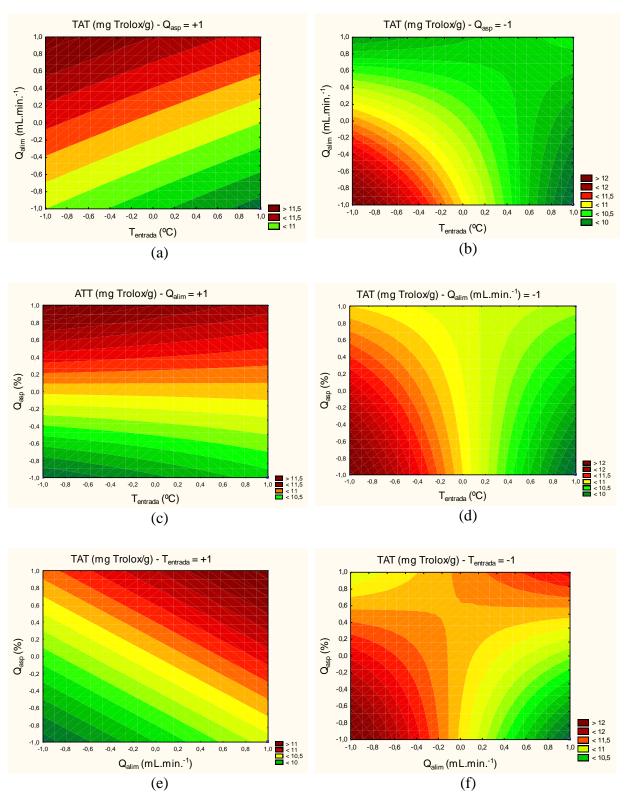
De forma semelhante ao observado para o rendimento (%), a análise estatística dos resultados para a aplicação do modelo de segunda ordem também se mostrou inconsistente para a interpretação do processo em estudo, haja visto o baixo coeficiente de correlação encontrado ($R^2 = 0.3574$), como observado na tabela de análise de variação (ANOVA) para o teor de antioxidantes totais (Anexo IIb deste trabalho). O perfil comparativo entre os resultados previstos *versus* resultados observados mostra também uma grande dispersão dos resultados experimentais (Figura 16).


Figura 16 - Curva preditos *versus* observados segundo o modelo quadrático para a variável teor de antioxidantes totais (%) na obtenção do pó de pitaia vermelha via atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.

Fonte: Autor (2015).

Na Figura 17 observa-se um ajuste ideal ao modelo linear entre os valores experimentais e calculados, mostrando a significância de todas as variáveis investigadas para a definição do rendimento experimental.

Figura 17 - Valores preditos *versus* observados pelo modelo linear versus para o teor de antioxidantes totais no estudo de secagem do pó de pitaia vermelha via atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.


Fonte: Autor (2015).

Assim como para a variável rendimento (%), a comparação entre os valores experimentais apresentados e os valores determinados pelo modelo para o teor de antioxidantes (mg Trolox/g) do pó de pitaia vermelha mostra bons ajustes entre os valores correlacionados, já que os pontos apresentados se encontram todos dentro da reta representativa.

A Figura 18 apresenta as superfícies de contorno para as respostas experimentais relacionadas ao teor de antioxidantes totais do pó de pitaia vermelha produzido.

Analisando a Figura 18, os resultados experimentais mostram que o teor de antioxidantes totais no pó de pitaia vermelha apresenta uma tendência de aumento a menores valores de temperatura e menores valores de vazão de alimentação. Temperaturas mais altas e maiores tempos de permanência no ciclone favorecem os processos oxidativos das substâncias presentes, degradando-as e diminuindo a concentração de compostos bioativos. Para o efeito da vazão de alimentação, observa-se que o teor de antioxidantes totais é maior quando os níveis da taxa de aspiração e temperatura permanecem em seus níveis inferiores.

Figura 18 - Superfícies de contorno para o teor de antioxidantes totais (TAT) dos pós de pitaia vermelha produzidos por atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.

Fonte: Autor (2015).

Os resultados desta parte do estudo evidenciam que altas concentrações de antioxidantes totais no pó de pitaia vermelha produzido por atomização *spray drying* podem ser obtidos nos níveis mais baixos de temperatura de entrada, vazão de alimentação e taxa de aspiração, o que é interessante do ponto de vista operacional e da minimização dos custos industriais de implementação.

Segundo Kitamura et al. (2009), durante o processo de secagem de alimentos líquidos, algumas substâncias sensíveis ao calor como vitaminas, enzimas e bactérias tendem a se degradar ou são perdidos devido ao contato com o ar quente entre 120 a 180°C.

Com base nos contextos relacionados anteriormente, adotou-se como condições ótimas de atomização *spray drying* do suco de pitaia vermelha: 160°C de T_{entrada}, 92% de Q_{asp} e 6mL.min⁻¹de Q_{alim}. Esses parâmetros foram empregados em todas as outras preparações experimentais ao longo das demais etapas da pesquisa.

5.3.3 Caracterização do pó de pitaia vermelha produzido por atomização spray drying

A Figura 19 apresenta a imagem do pó de pitaia vermelha obtido nas condições ótimas de 160°C (T_{entrada}), 92% (Q_{asp}) e 6mL.min⁻¹ (Q_{alim}), escolhidas ao longo da pesquisa. Em geral, o pó apresenta-se com uma granulometria muito fina e com coloração rosa. O cheiro é característico e o sabor é doce.

Figura 19 - Imagem do pó de pitaia vermelha obtido por atomização *spray drying*. IFCE – *Campus* Fortaleza – Ceará, 2015.

Fonte: Autor (2015).

Na Tabela 11 são apresentados os resultados relativos à caracterização do pó de pitaia vermelha por atomização *spray drying* nas condições operacionais ditas como ótimas.

Tabela 11 - Características físico-químicas do pó de pitaia vermelha microencapsulado obtido

Parâmetro	Média ± Desvio padrão
pH (solução 1 %)	$5,21 \pm 0,01$
Umidade (%)	$2,\!46 \pm 0,\!20$
Sólidos Totais (%)	$97,5 \pm 0,11$
Sólidos Solúveis (°Brix)	$18,1 \pm 0,13$
Vitamina C (g/100g)	$0,\!45 \pm 0,\!03$
Flavonoides amarelos (mg/100g)	$9,38 \pm 0,01$
Antocianinas totais (mg/100g)	$13,7 \pm 0,02$
Antioxidantes totais (mg Trolox/g)	$13,5 \pm 0,01$

por atomização spray drying. IFCE – Campus Fortaleza – Ceará, 2015.

Fonte: Autor (2015).

O pH obtido no pó de pitaia vermelha foi de 5,21 (Tabela 11). Gomes et al. (2002), estudando as isotermas de adsorção de umidade da acerola verde em pó, observaram um valor de 3,82. Já Santos (2014) obteve um valor de 3,52 para o pó de acerola verde. No entanto, Tanaka (2007) observou um valor de pH em suco de acerola microencapsulado de 4,99 mostrando que os valores de pH, para diferentes tipos de suco em pó, podem variar.

O teor de umidade de 2,46% (Tabela 11) obtido no pó de pitaia vermelha foi inferior ao relatado por Santos (2014), que observou valores de 4,2% de umidade em estudo realizado com pó de acerola verde, e de Tanaka (2007), que obteve um valor de 3,47% para o mesmo fruto, mostrando que o pó produzido é menos úmido que outros já relatados na literatura.

Para os sólidos totais, o valor médio obtido de 97,5% (Tabela 11) foi superior ao relatado por Santos (2014), que, avaliando pó de acerola verde atomizado, observou valor de sólidos totais 91,1%. O mesmo autor encontrou valor médio de higroscopicidade de 23,8g de água/100g para o pó de acerola verde, o qual é semelhante ao encontrado no pó de pitaia vermelha em estudo, que apresentou um valor médio de higroscopicidade de 22,6%.

Pedro (2009) afirma que o parâmetro higroscopicidade é de fundamental importância quando se refere a alimentos desidratados tanto do ponto de vista industrial

quanto comercial, pois além de estar associada à estabilidade química, física e microbiológica, também influencia consideravelmente o setor de embalagens, a partir da autoaglomeração dos pós e a perda de fluidez durante o armazenamento dos produtos finais.

O resultado de solubilidade encontrado nesse estudo foi de 98,4%, mostrando que o pó encapsulado de pitaia vermelha possui boa solubilidade, podendo ser atribuído à elevada solubilidade da maltodextrina em água e a composição dos sólidos, basicamente representada por açúcares simples e ácidos orgânicos de cadeia curta. Santos (2014) encontrou valores semelhantes em pó encapsulado de acerola verde, que obteve um percentual de 98,8%. Assim como Barbosa (2010), que, em sua pesquisa com sucos atomizados de mistura de frutas, relatou valores de solubilidade entre 97,5 e 98,5% para pós elaborados com concentrações de maltodextrina entre 12 e 15%.

Os flavonoides amarelos apresentaram um teor de 9,38mg/100g (Tabela 11), o que mostra um aumento de 35,5% no teor desse parâmetro em relação ao suco de pitaia utilizado como matéria-prima no processo *spray drying*. Aumentos ainda mais significativos foram encontrados nos teores de antioxidantes totais, em que o efeito de desidratação incrementou em até 8 vezes a concentração dos compostos bioativos.

Ersus e Yurdagel (2007) estudaram a microencapsulação por *spray drying* de antocianinas extraídas de black carrot (*Daucus carota* L.), utilizando diferentes temperaturas de secagem (160, 180 e 200°C) e maltodextrinas com diferentes DE's (10, 20 e 30), e puderam observar que, para as maltodextrinas de maior DE, os ensaios realizados a 160°C apresentaram maior retenção de antocianinas do que os demais (630,92mg/100g).

5.4 Estudos de estabilidade dos compostos bioativos do pó de pitaia vermelha

As amostras (em duplicata) foram armazenadas em tubos de falcon, envoltos em papel alumínio, e depois acondicionadas em dessecador a 25°C. Cada embalagem continha aproximadamente 15g de amostra que preenchiam praticamente a totalidade do volume do recipiente. As análises foram realizadas no dia do processamento (amostra zero) e a cada 15 dias até completar 90 dias. A Tabela 12 expressa as médias e os desvios-padrões para a estabilidade dos compostos bioativos durante 90 dias de armazenamento.

Na Tabela 12 observa-se que houve uma diminuição de 15% dos valores de antioxidantes totais presentes no pó de pitaia vermelha, havendo diferença significativa nos primeiros 45 dias. A partir desse tempo, as variações de concentração foram muito pequenas.

Tabela	12 -	Resultados	de	estabilidade	dos	compostos	bioativos	durante	90	dias	de
armazei	namen	to. $IFCE - C$	amp	ous Fortaleza -	- Cea	ırá, 2015.					

]	Compostos bioativos Média ± Desvio padrão	
Tempo (dias)	Antioxidantes totais (mg trolox/g)	Flavonoides amarelos (mg/100g)	Antocianinas (mg/100g)
0	$13,49 \pm 0,01 \ a$	$9,38 \pm 0.02 \ a$	$13,73 \pm 0,01 \ a$
15	$12,34 \pm 0,01 \ b$	$8,21 \pm 0,02 b$	$12,12 \pm 0,01 \ b$
30	$12,04 \pm 0,01 \ c$	$8,11 \pm 0,01$ <i>c</i>	$11,64 \pm 0,01$ <i>c</i>
45	$11,84 \pm 0,01 d$	$6,45 \pm 0,01 d$	$11,04 \pm 0,01 d$
60	$11,63 \pm 0,11 e$	$6,05 \pm 0,01 \ e$	$10,74 \pm 0,02 e$
75	$11,62 \pm 0,02 e$	$5,86 \pm 0,01 f$	$10,31 \pm 0,05 f$
90	$11,46 \pm 0,05 f$	$4,95 \pm 0,01 g$	$9,97 \pm 0,01 \ g$

^{*}Médias seguidas de mesma letra na mesma linha não diferem estatisticamente entre si ao nível de 95% de significância pelo teste F (p<0,05). Fonte Autor (2015).

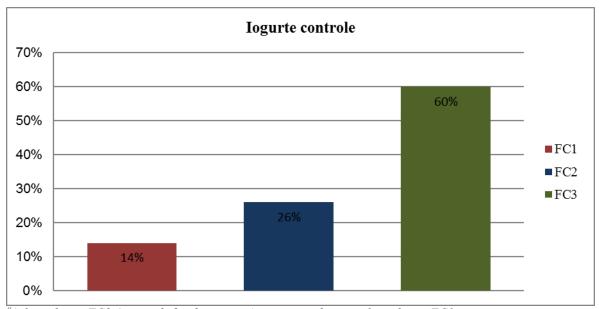
Os valores médios observados de flavonoides amarelos decaíram bruscamente ao longo do tempo de armazenamento, mostrando diferenças significativas em todos os tempos, monitorados (Tabela 12). A redução máxima no teor de flavonoides foi de aproximadamente 47,2 %. Mesmo comportamento foi observado para antocianinas totais, em que se observou uma redução de até 27,4 % desses componentes durante o tempo de estocagem. Embora as amostras de pó estivessem protegidas da luz, houve declínio nos teores de antocianinas totais presentes no pó, o que foi observado também por Landim (2008), o qual, analisando pigmentos atomizados de urucum e açaí, observou que durante o período de armazenamento houve uma redução de bioativos nos primeiros dias de estocagem.

Oliveira et al. (2013) afirmam que as antocianinas são pigmentos muito instáveis quando expostos à ação de oxigênio, temperatura elevada e pH, ou até mesmo às condições usuais de processamento e armazenamento dos alimentos. Comportamento esse observado para o pó de pitaia vermelha durante o período de armazenamento no presente estudo.

Segundo Valduga et al. (2008), a coloração vermelha das antocianinas também pode ser perdida em pH superior a 4,0. Em geral, valores de pH entre 1 e 3 conferem melhor estabilidade às antocianinas.

Ersus e Yurdagel (2007) estudaram a estabilidade de antocianinas de cenouras pretas microencapsuladas por atomização em diferentes condições de temperatura sob a incidência de luz. O conteúdo de antocianinas dos pós encapsulados decresceu 33% durante 64 dias de estocagem à 25°C, sendo bem semelhante ao presente estudo, visto que no tempo de 60 dias o conteúdo de antocianinas tinha diminuído aproximadamente 20%. Esses mesmos

autores afirmam que, quando os pós foram mantidos em estocagem à 4°C, a redução dos teores de antocianinas foi de apenas 11% durante o mesmo período de estocagem.


Segundo Quek, Chok, Swedlund (2007), pós obtidos sob baixas temperaturas tendem a se aglomerar devido a sua alta umidade. Essa aglomeração permite que haja uma diminuição da exposição dos pós ao oxigênio, protegendo os pigmentos contra a degradação.

5.5 Produção e caracterização do iogurte tipo grego enriquecido com pó de pitaia vermelha

5.5.1 Testes preliminares

De acordo com a Figura 20, a formulação controle mais aceita pelos provadores foi a formulação (*FC3*) que obteve 60% de aceitação por apresentar sabor mais agradável e textura mais firme. Essa formulação base foi utilizada para a elaboração dos iogurtes enriquecidos com o pó de pitaia vermelha.

Figura 20 - Percentual de aceitabilidade da formulação# controle nos testes preliminares. IFCE - *Campus* Limoeiro do Norte - Ceará, 2015.

#A formulação FC3 é cerca de 2 a 3 vezes mais concentrada que a formulação FC1. A formulação FC2 apresenta composição intermediária as formulações FC1 e FC3. Fonte: Autor (2015).

5.5.2 Caracterização físico-química do iogurte tipo grego

Para a elaboração do iogurte tipo grego, foi utilizado leite UHT padronizado com 3% de gordura, pH de 6,7 e 0,17g de ácido láctico/100mL, o qual se encontra dentro dos padrões mínimos estabelecidos pelo regulamento técnico de identidade e qualidade de leite UHT (BRASIL, 1996). Os valores médios obtidos para as características físico-químicas das formulações de iogurte tipo grego (*P1* e *P2*), a partir da formulação *FC3*, estão apresentados na Tabela 13. Notadamente a adição de pó de pitaia vermelha em *P2* é superior à observada em *P1*.

Tabela 13 - Caracterização físico-química das formulações de iogurte tipo grego (controle e enriquecido). IFCE – *Campus* Limoeiro do Norte – Ceará, 2015.

Parâmetros	Controle (FC3)	P1	P2
Acidez titulável (g ácido láctico/100g)	1,13 <i>b</i>	1,15 ab	1,16 a
pН	4,73 a	4,70 a	4,66 a
Umidade (%)	82,8 a	81,2 <i>a</i>	80,6 a
Cinzas (%)	1,19 <i>a</i>	1,21 a	1,13 a
Gordura (%)	2,80 a	2,73 a	2,86 a
Proteínas (%)	5,17 a	4,22 a	5,04 a
Carboidratos (%)	7,02 <i>b</i>	9,47 a	9,22 a
Viscosidade (cP)	642,64 a	437,51 <i>b</i>	426,18 b

^{*}P1 e P2 representam as formulações de iogurte enriquecidas com pó de pitaia vermelha (P2>P1).

Fonte: Elaborado pelo Autor (2015).

Na Tabela 13 verifica-se que foram observadas diferenças significativas (P < 0,05) entre os tratamentos avaliados somente para os parâmetros de acidez titulável, carboidratos e viscosidade. Segundo Almeida (2012), a consistência do iogurte está ligada a sua acidez, podendo ser alterado durante o período de armazenamento. Na prática, os valores obtidos neste trabalho estão dentro dos limites estabelecidos pela legislação de leites fermentados, que estabelece acidez de 0,6 a 2,0% (BRASIL, 2007).

Ferreira (2012), realizando estudos em iogurte funcional sabor cajá, obteve 0,6% de acidez, já Pereira et al. (2009) obtiveram 0,8% de acidez para iogurte de leite de cabra com polpa de uva. Silva (2013) obteve valores de acidez para iogurte de umbu e umbu cajá que variaram de 0,7 e 0,9% ácido lático. Laguna e Egito (2006) encontraram valores semelhantes de acidez para iogurte de leite de cabra natural de 0,75%.

^{**}Médias seguidas de mesma letra na mesma linha não diferem estatisticamente entre si, ao nível de 5% de significância pelo teste F (p<0,05).

Martins et al. (2013) analisaram a acidez titulável de iogurte de extrato hidrossolúvel de soja e, ao final, obteve um valor total de 0,55% acido láctico. Sampaio et al. (2011) avaliaram iogurte grego sabor cappuccino e encontraram 0,96% de ácido láctico. A acidez pode variar de acordo com a temperatura de incubação, sendo de fundamental importância para que haja o desenvolvimento da cultura no armazenamento a frio.

Em relação ao pH, obteve-se médias que variaram de 4,66 a 4,73 (Tabela 13). A legislação não determina valores de pH para iogurte, entretanto o acompanhamento desse fator se faz importante no processo de fabricação, relação pH e acidez e também com os parâmetros microbiológicos. Os valores maiores de pH quando comparados com outros iogurtes pode ser atribuído ao maior tempo de fermentação que o iogurte tipo grego necessita para a completa formação do coágulo. Esses valores de pH tendem a diminuírem com o período de estocagem sob refrigeração (ALMEIDA, 2012).

Silva (2013) observou valores de pH para iogurte de umbu de 3,20 e para iogurte de umbu cajá de 2,93. Ferreira (2012), avaliando o conteúdo de proteínas em iogurte funcional com polpa de cajá, encontrou pH de 3,97. Sampaio et al. (2011) encontraram pH de 4,02 em iogurte grego de cappuccino. Já Borges et al. (2009) obtiveram, elaborando um iogurte com leite de búfala e polpa de cajá pH de 4,56, valor bem semelhante ao encontrado nesse estudo.

Os valores médios encontrados para teor de umidade das formulações de iogurte tipo grego analisadas variaram de 80,6 a 82,8%, não resultando em diferença significativa entre si (Tabela 13). A umidade de um alimento está relacionada com sua estabilidade, qualidade e composição e pode afetar o armazenamento, a embalagem e o processamento. Martins et al. (2013) avaliaram iogurte de extrato hidrossolúvel de soja e encontraram uma média de 85,18% para o teor de umidade. Medeiros et al. (2007) analisaram iogurte de marca comercial e obtiveram 80,53% de umidade, bem semelhante aos valores médios encontrados nas formulações de iogurte tipo grego analisadas nesse estudo.

As formulações apresentaram valores médios de 1,13 a 1,21% de cinzas (Tabela 13). Martins et al. (2013) relacionaram teor de cinzas de 0,48% em iogurte de extrato hidrossolúvel, mostrando que o presente estudo apresenta teores bem mais altos. O teor de cinzas de um alimento representa o conteúdo mineral que permanece após a queima de matéria orgânica de uma amostra.

Martins et al. (2013) obtiveram resultados para cinzas variando entre 2,63 e 4,01% e em amostras de iogurte de soja produzidas com extrato desengordurado com e sem espessante, respectivamente. Já Sampaio et al. (2011), analisando iogurte grego sabor

cappuccino, encontraram um percentual de 1,37%, que se assemelha ao encontrado neste estudo.

O teor de gordura variou entre 2,73 a 2,86% (Tabela 13). Rensis e Souza (2008), avaliando iogurte de leite tradicional, obtiveram o resultado de 3,10%. Valores semelhantes ao estudo foram encontrados por Mesquita et al. (2012), os quais encontraram um teor de gordura na amostra de iogurte analisada de 2,5%. Moleta (2006) verificou, ao avaliar as características físico-químicas de iogurte caseiro e industrializado de ameixa enriquecido com fibras, que os resultados do teor de gordura do iogurte industrializado foi o que mais se aproximou do valor estabelecido pela legislação (3,0%), apresentando valor de 2,99% e o iogurte caseiro com teor de gordura 2,26%.

Quintino (2012) afirma que, do ponto de vista nutricional, o iogurte é um dos derivados do leite que conserva todas as suas propriedades mesmo depois de processado, entretanto, durante a etapa de aquecimento, pode ocorrer uma ligeira perda em algumas vitaminas hidrossolúveis.

A Instrução Normativa nº 46, de 23 de outubro de 2007, que adota o Regulamento Técnico de Identidade e Qualidade de Leites Fermentados, afirma que o mínimo permitido para iogurtes integrais é de 3,0%, entretanto, valores de gordura compreendidos entre 0,6% e 2,9% classificam o produto como parcialmente desnatado (BRASIL, 2007). Assim as formulações elaboradas enquadram-se nesta classificação.

O teor de proteína que, segundo a legislação brasileira, deve ser no mínimo 2,9 g/100g, foi superior em todas as amostras (Tabela 13). O teor de proteína mais elevado pode nesse caso ser atribuído a alguns ingredientes utilizados, como, por exemplo, o leite em pó. Laguna e Egito (2006) encontraram em iogurtes batidos com polpas de frutas teores médios de proteína entre 1,66 e 2,31g/100g.

No que diz respeito à composição, pode-se dizer que o iogurte e o leite possuem características semelhantes, muito embora seja correto afirmar que existem diferenças que acontecem devido a fatores, tais como mudanças ocorridas pela fermentação bacteriana sobre a lactose e pela adição de leite em pó, normalmente feita para aumentar os sólidos do leite, o que permite maior conteúdo proteico (MESQUITA et al., 2012).

Em relação aos carboidratos, observa-se que houve diferença significativa (p<0,05) entre a formulação controle e formulações enriquecidas com pó de pitaia vermelha (P1 e P2) (Tabela 13). Comparando os resultados com outros autores, percebe-se que os valores obtidos nas formulações P1 e P2 foram inferiores à média encontrada por Mesquita et

al. (2012), que, ao avaliaram amostras de iogurte, com adição de tamarindo doce obtiveram valores próximos a 11,6%.

A consistência final do iogurte está diretamente ligada à quantidade de extrato seco total do leite, bem como a estabilidade e aceitabilidade. Entretanto, existem muitas maneiras de aumentar esse parâmetro no iogurte, sendo uma delas através da adição de leite em pó. A adição desse produto proporciona uma característica ao produto final, tornando o iogurte mais consistente e firme, além de que a homogeneização antes da aplicação do tratamento térmico impede que haja separação da gordura e efeitos indesejáveis ao produto final durante o período de fermentação (ALMEIDA, 2008).

No que diz respeito à viscosidade, os valores médios variaram de 642,64 a 426,18cP (Tabela 13), valores estes mais altos do que os encontrados por Sampaio et al. (2011), os quais obtiveram um valor médio de viscosidade de 341,3cP em iogurte grego sabor cappuccino. Já em estudo realizado por Fernandes (2003), foi observado, em três amostras de iogurte produzido com leite contendo diferentes níveis de células somáticas, valores que variaram de 68,00 a 80,93cP, caracterizando um iogurte bem menos viscoso que as amostras avaliadas nesse estudo. Os valores observados caracterizam uma textura mais firme, desejável para esse tipo de iogurte e conferem mais valor comercial ao produto.

A viscosidade, a estabilidade e a consistência podem ser influenciadas por alguns fatores, como tratamento térmico, acidificação, temperatura de incubação e condições de armazenamento (FERNANDES, 2003).

5.5.3 Caracterização microbiológica do iogurte tipo grego

A Tabela 14 apresenta os resultados encontrados para a caracterização microbiológica das formulações de iogurte tipo grego (formulação controle e formulações enriquecidas), quanto aos parâmetros de coliformes totais, coliformes termotolerantes, pesquisa de *Salmonella* sp., bolores e leveduras e bactérias láticas.

Tabela 14 - Parâmetros microbiológicos das formulações de iogurte tipo grego#. IFCE - *Campus* Limoeiro do Norte - Ceará, 2015.

	Coliformes totais (NMP/g)*	Coliformes termotolerantes (NMP/g)	Salmonella ssp. (25 g)	Bolores e leveduras (UFC/g) **	Bactérias láticas (UFC/g)
Controle	<3	<3	Ausente	<10	3.8×10^5
P1	<3	<3	Ausente	<10	7.5×10^5
P2	<3	<3	Ausente	<10	12.8×10^5

#Formulações controle e enriquecidas.

Fonte: Elaborado pelo Autor (2015).

Analisando a Tabela 14, observa-se que as formulações de iogurte tipo grego enriquecidas comparadas às características microbiológicas investigadas estão de acordo com o estabelecido na legislação vigente, demonstrando que os iogurtes foram processados sob condições higiênico-sanitárias adequadas.

Silva (2013), ao avaliar microbiologicamente iogurtes de leite de cabra com frutos do semiárido, encontrou valores semelhantes aos encontrados neste estudo, apresentando contagem de coliformes a 45 °C <3 NMP/g e ausência de Salmonella em 25g. Mazochi et al. (2010) obtiveram, analisando iogurte de leite de cabra suplementado com Bifidobacteruim spp., valores semelhante (<3 e ausente) para contagem de coliformes e Salmonella ssp. Resultados semelhantes também foram relatados por Bortolozo e Quadros (2007) e Cruz (2012), os quais encontraram valores para coliformes totais, fecais e Salmonella ssp. em iogurte com sucralose e iogurte misto respectivamente, de acordo com o proposto pela legislação vigente.

Braga, Neto e Vilhena (2012) avaliaram iogurtes adicionados de polpa e de xarope de mangostão (*Garcinia mangostana* L.) e obtiveram como resultado para coliformes um valor < 3 NMP/mL e para a contagem de bolores e leveduras < 10 UFC/mL. Segundo os autores, a ausência de coliformes no produto final pode ser indicativo de boas condições higiênico-sanitárias durante a elaboração dos produtos.

Para o parâmetro bolores e leveduras, as formulações não apresentaram crescimento de colônias, indicando assim que as matérias-primas eram de boa qualidade e de boa procedência e que o armazenamento dos produtos foi realizado de forma adequada.

^{*}P1 e P2 representam as formulações de iogurte enriquecidas com pó de pitaia vermelha (P2>P1).

^{*}NMP/g = Número Mais Provável/grama.

^{**}UFC/g = Unidade formadora de colônia/grama.

Para a identificação de *Salmonella* ssp., as formulações se encontravam dentro dos padrões exigidos pela legislação (BRASIL, 2001; BRASIL, 2007). Santana et al. (2012) avaliaram iogurtes à base de pitaia enriquecidos com quinoa e também encontraram resultados semelhantes.

Em relação à contagem de bactérias láticas, as formulações avaliadas apresentaram valores entre de 0,38 x 10⁶ a 1,28 x 10⁶, que indicam boa presença de colônias. A Resolução RDC nº 12, de 02 de janeiro de 2001 (ANVISA), estabelece um valor mínimo de 10⁶ UFC/ mL de bactérias láticas em bebidas lácteas fermentadas.

Silva e Rodrigues (2006) avaliaram iogurte aromatizado e obtiveram uma variação de 2,25 x 10⁷ a 9,15 x 10⁸ UFC/mL. Silva (2013) encontrou valores de 1,4 x 10⁷ e 1 x 10⁷ UFC/g ao avaliar microbiologicamente iogurtes de umbu e umbu cajá, respectivamente. Mazochi et al. (2010) encontraram em iogurtes de leite de cabra suplementado com *Bifidobacteruim* spp. valores de 10⁶a 10⁸ UFC/g.

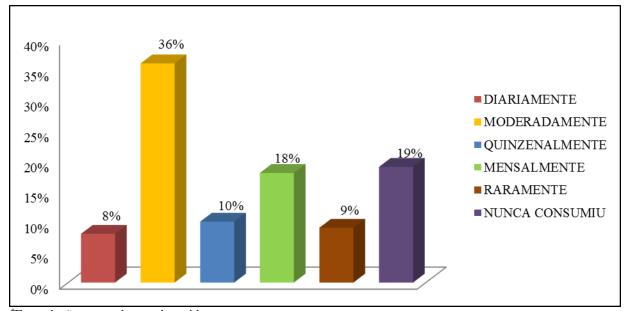
Awaisheh et al. (2005) afirmaram que as bactérias lácticas devem, após a ingestão, alcançar, em condições intestinais e em quantidade elevada, adesão à parede intestinal e multiplicação, para então exercer efeitos benéficos à saúde.

As bactérias láticas exercem um papel muito importante nos alimentos, já que elas são responsáveis pelo processo de acidificação dos produtos principalmente pela produção de ácido láctico, impedindo assim o desenvolvimento de bactérias indesejáveis na formulação (FORSYTHE, 2002).

Segundo Tebaldi et al. (2007), a presença de bactérias láticas permite que o tempo de conservação dos produtos fermentados seja muito maior que a dos produtos no qual a matéria-prima não foi fermentada. A concentração de bactérias lácticas viáveis em iogurtes com polpas de frutas tende a diminuir com o tempo (PEREIRA et al., 2009; SILVA; RODRIGUES, 2006).

5.5.4 Análise sensorial do iogurte tipo grego

5.5.4.1 Caracterização dos provadores


Participaram dos testes sensoriais 120 provadores, sendo que 62% eram do sexo feminino e 38% do sexo masculino. Entre estes provadores 3% eram menores de 18 anos, 82% estavam na faixa etária entre 18 e 26 anos, 10% entre 27 e 34 anos, 4% entre 35 e 42

anos e 1% tinha mais que 51 anos. Em relação à escolaridade, 9% possuíam nível médio, 74% tinham nível superior incompleto, 9% possuíam nível superior completo e 8% eram pósgraduados.

5.5.4.2 Frequência de consumo de iogurte comercial tipo grego

Para o teste de frequência de consumo, os provadores foram solicitados a afirmar qual a frequência em que consumiam iogurtes tipo grego de marcas já comercializadas. Os dados obtidos podem ser visto na Figura 21.

Figura 21 - Parâmetros microbiológicos das formulações de iogurte tipo grego[#]. IFCE - *Campus* Limoeiro do Norte - Ceará, 2015.

#Formulações controle e enriquecidas.

Fonte: Autor (2015).

Observa-se na Figura 21 que 72% dos provadores possui grau relevante de familiaridade com o produto testado, podendo, assim, melhor avaliar as características sensoriais envolvidas no estudo.

5.5.4.3 Teste de aceitação

Na Tabela 15 estão apresentados os resultados para o teste de aceitação dos iogurtes tipo grego elaborados durante a pesquisa.

Tabela 15 - Pontuação média no teste de aceitação dos atributos das formulações de iogurt	e
tipo grego [#] . IFCE – <i>Campus</i> Limoeiro do Norte – Ceará, 2015.	

Amostra	Aroma	Sabor	Cor	Textura	Aparência global
Controle	7,66 a	8,04 a	7,57 b	8,09 a	7,87 a
P1	7,76 a	8,13 a	7,99 a	8,18 <i>a</i>	7,95 a
P2	7,67 a	8,10 <i>a</i>	8,02 a	8,10 a	8,04 a

^{*}Formulações controle e enriquecidas.

Comparando-se os resultados da Tabela 15, observa-se que não existem diferenças significativas entre as formulações em relação aos atributos sensoriais de aroma, sabor, textura e aparência global, evidenciando que a adição do pó de pitaia vermelha não influencia a percepção sensorial desses atributos. Particularmente os atributos sabor e textura, parâmetros avaliados no pré-teste para elaboração das formulações, foram os atributos que apresentaram maiores médias.

Os resultados de Quintino (2012) mostraram médias com boa aceitação para os atributos avaliados (cor: 8,0 e 8,1; sabor: 7,7 e 8,2; consistência: 7,5 e 8,0 e odor: 7,4 e 7,8). Rocha et al. (2008) também relataram valores semelhantes, com média de 7,4 para a aceitação de iogurte de araticum e Oliveira et al. (2008) com média de 7,0 também para a aceitação de iogurte de polpa de araticum.

Pegoraro (2011) avaliou sensorialmente iogurte acrescido de geleia de amorapreta (*Morus nigra* L.) e pólen apícola e observou que não houve diferença significativa entre
as duas amostras em relação ao atributo sabor, mas estas diferiram de uma terceira amostra
analisada, a qual apresentou menor aceitação entre os provadores. Não houve diferença
significativa entre as amostras para o atributo viscosidade, indicando que o aumento da
concentração de pólen na amostra não interferiu de forma perceptível nas formulações.

Santana et al. (2006), em estudo sensorial de iogurtes de pêssego com baixos valores calóricos, observaram em relação ao atributo sabor, que as amostras estudadas não apresentaram diferença significativa entre si, semelhante ao presente estudo.

Bortozolo e Quadros (2007), ao estudarem iogurtes adicionados de prebióticos, obtiveram média de aceitação de valor 8,2 em escala hedônica de 9 pontos, semelhantes ao encontrado neste estudo.

^{*}Médias com letras iguais na mesma coluna não diferem entre si estatisticamente (p<0,05) pelo teste de Tukey. ** P1 e P2 representam as formulações de iogurte enriquecidas com pó de pitaia vermelha (P2>P1). Fonte: Autor (2015).

Silva (2013) avaliou amostras de iogurte de umbu e umbu cajá e observou que, para o atributo aroma, os valores médios não diferiram estatisticamente, entretanto nos demais atributos (aparência, sabor, textura e impressão global), os valores apresentaram diferença significativa em nível de 5% de probabilidade.

Souza et al. (2009) obtiveram média de 8,5 na avaliação do sabor de iogurte de polpa de maracujá enriquecido com linhaça, valor acima do encontrado no presente estudo.

Para avaliação da aceitação pela cor, pode-se afirmar que a adição do pó de pitaia vermelha à formulação do iogurte tipo grego foi bastante significativa, apresentando diferença entre a formulação controle (sem adição de pó) e as formulações P1 e P2 que foram adicionadas com diferentes percentuais de pó de pitaia vermelha (P1 < P2). Assim a pitaia vermelha, por apresentar em sua composição grande quantidade de pigmentos, principalmente antocianinas e flavonoides, pode ser usada também como corante natural pela indústria alimentícia, uma característica importante, além do seu poder antioxidante.

Quintino (2012) avaliou o parâmetro cor em amostras de iogurte adicionado de suco de maracujá e obteve em ambas as amostras estudadas um índice de aceitação de 94%, com maior número de julgamentos tipo nota 9 (gostei muitíssimo) para esse parâmetro.

Quanto a aparência global, as formulações avaliadas apresentaram médias entre 7 e 8 na escala hedônica, que corresponde a gostei moderadamente a gostei muito, o que se assemelha ao resultados encontrados por Quintino (2012), que relatou médias entre 6 e 9 para este atributo em iogurtes adicionados de suco de maracujá.

5.5.4.4 Índice de aceitabilidade

O índice de aceitação foi calculado considerando os valores: rejeição (1-4), indiferença (5) e aceitação (6-9). A Figura 22 apresenta o perfil de aceitabilidade das amostras formuladas de iogurtes enriquecidos com pó de pitaia vermelha.

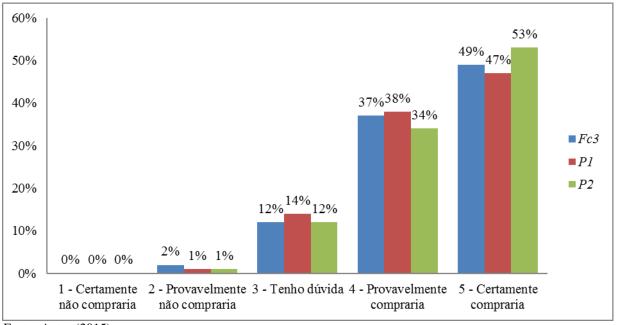
92% 90% 88% ■ Fc3 86% ■*P1* ■ P2 84% 82% 80% AROMA SABOR COR **TEXTURA** APARENCIA GLOBAL

Figura 22 - Histograma do índice de aceitabilidade das formulações de iogurtes tipo grego enriquecidas com pós de pitaia vermelha e da formulação controle. IFCE - *Campus* Limoeiro do Norte - Ceará, 2015.

Fonte: Autor (2015).

Em geral observa-se na Figura 22 que as formulações desenvolvidas obtiveram boa aceitabilidade em relação a todos os atributos avaliados, já que apresentaram índices superiores a um mínimo comum de 70%, conforme sugerido por Dutcosky (2013).

A textura foi o atributo que apresentou os maiores índices de aceitação (> 90 %) pelos provadores. Devido a escassa fonte de pesquisa relacionada a dados de textura em iogurte grego, e também por ser um produto relativamente novo no mercado, esse parâmetro se mostrou ser um fator determinante para os provadores, já que se configurou como o atributo que atraiu mais interesse dos provadores, visto que habitualmente consome-se bastante iogurte batido pelos consumidores locais.


Sousa, Medeiros e Cruz (2012) avaliaram iogurte adicionado de polpa artesanal de açaí e evidenciaram um Índice de Aceitabilidade (*IA*) de 88,6%, bem semelhante ao observado no presente estudo.

Em estudo realizado por Quintino (2012), avaliaram-se amostras de iogurte natural contendo suco de maracujá e observaram-se índices de aceitabilidade entre 85% e 94% para uma amostra de iogurte sabor maracujá processado com a polpa da fruta e*IA* entres 94% e 97% para outra amostra de iogurte sabor maracujá, processado com suco artificial em pó da fruta.

5.5.4.5 Intenção de compra

A Figura 23 apresenta os resultados de intenção de compra para as formulações de iogurtes tipo grego elaboradas neste estudo.

Figura 23 - Intenção de compra para as formulações de iogurtes tipo grego enriquecidas com pós de pitaia vermelha e da formulação controle. IFCE – *Campus* Limoeiro do Norte – Ceará, 2015.

Fonte: Autor (2015).

Observa-se na Figura 23 que as três formulações avaliadas obtiveram uma boa intenção de compra, considerando a boa quantidades de notas 4 e 5 atribuídas, obtendo em média 36% e 49% respectivamente.

Santana et al. (2006) verificaram a intenção de compra de três amostras de iogurte light sabor pêssego, revelando resultados para atitudes de compra de 45% e 62,5%, semelhantes ao presente estudo.

Paula et al. (2012) avaliaram amostras de diversos iogurtes batidos com diferentes aromatizantes e afirmaram que a amostra que continha aromatizante de framboesa apresentou atitude positiva de compra, com 72% dos provadores afirmando que a comprariam, seguido pelo iogurte com sabor limão com 60,4% de intenção de compra, por outro lado 9,3% dos provadores não comprariam esses sabores.

Em estudo realizado com Quintino (2012), as amostras avaliadas no teste de intenção de compra apresentaram atitude positiva de 90% dos provadores afirmando que comprariam ambas as amostras testadas de iogurte de maracujá.

CONCLUSÕES

A realização do estudo permitiu concluir que:

- A pitaia vermelha (*H. costaricensis*), proveniente da chapada do Apodi, apresentou propriedades físico-químicas e composição química semelhante às relatadas nas literaturas, apresentando 11,8 % de sólidos, dos quais 67% são açúcares. O teor de compostos bioativos totais foi de 0,16 % (expresso como compostos antioxidantes totais). Esses valores mostram que essa matéria-prima apresenta-se como boa fonte de compostos bioativos, principalmente em sua forma em pó, quando as concentrações relatadas são 8 vezes mais elevadas.
- O estudo de atomização *spray drying* via abordagem fatorial mostrou no domínio experimental estudado condições ótimas de: 160 °C para temperatura de entrada; 6 mL/min de vazão de alimentação e 92% de taxa de aspiração, correspondente a rendimentos médios de 59,9 % e teores de antioxidantes totais de 12,35 mg Trolox/g.
- Na caracterização microbiológica não foi detectada a presença de *Salmonella* spp. nas amostras analisadas bem como coliformes totais e coliformes termotolerantes em valores abaixo do limite máximo exigido pela legislação RDC nº 12, de 02 de janeiro de 2001m da ANVISA, confirmando que as pitaias em estudo podem ser usadas na formulação/aditivação de produtos alimentícios sem comprometimento da qualidade do produto final.
- No estudo de estabilidade dos compostos bioativos, pode-se afirmar que durante os 90 dias de armazenamento na ausência de luz e água, os teores de antioxidantes totais e antocianinas, sofreram moderadas reduções (de 15 a 28 %), enquanto os flavonoides amarelos mostraramse bastantes sensíveis as condições de estocagem (perdas médias de 48 %).
- Os testes sensoriais dos iogurtes tipo grego elaborados com pós de pitaia vermelha podem ser considerados satisfatórios, apresentando indicações adequadas de aceitabilidade e de intenção de compra para as formulações elaboradas.
- As características nutricionais, de bioatividade e de poder antioxidante da pitaia podem agregar valor a iogurtes preparados com o pó dessa fruta, proporcionando ao consumidor acesso a um novo produto com boas propriedades biofuncionais.
- Em geral, os resultados obtidos mostram que o pó de pitaia vermelha com alta concentração de bioativos apresenta um potencial promissor de aplicação em produtos alimentícios, como, por exemplo, no iogurte tipo grego.

SUGESTÕES PARA TRABALHOS FUTUROS

Para continuidade do trabalho sugere-se:

- a) Estudos para obtenção de pó desidratados de frutos com propriedades reconhecidas, como caju, cajá etc, para estudos de aditivação em diferentes produtos alimentícios.
- b) Avaliação do uso de outros encapsulantes de compostos bioativos, por exemplo, goma de cajueiro, goma arábica, amido, sílica coloidal e quitosana no processo de desidratação de frutos de interesse.
- c) Avaliar sistemas de embalagem para conservação dos pós de sucos de frutos visando futura comercialização.
- d) Realizar ensaios reológicos no intuito de verificar o comportamento das formulações elaboradas.

REFERÊNCIAS

- ABREU, W. C. de.; LOPES, C. de O.; PINTO, K. M.; OLIVEIRA, L. A.; CARVALHO, G. B. M. de.; BARCELO, M. de F. P. Características físico-químicas e atividade antioxidante total de pitaias vermelha e branca. **Revista Instituto Adolfo Lutz**, vol.71, no.4. São Paulo, 2012.
- ABU BAKAR, M.F.; MOHAMED, M.; RAHMAT, A.; FRY, J. Phytochemicals and antioxidant activity of different parts of bambangan (*Mangifera pajang*) and tarap (Artocarpus odoratissimus). **Food Chemistry**, v.113, p.479-483, 2009.
- ALMEIDA, F. D. L. **Desidratação de suco de abacaxi probiótico por spray-dryer.** 2012. 71f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) Centro de Ciências agrárias. Universidade Federal do Ceará UFC. Fortaleza, 2012.
- ALMEIDA, C. P. M. **Efeito do fator de concentração nas características de iogurte com baixo teor de lactose obtido por ultrafiltração**. 2008. 58f. Dissertação (Engenharia de Processos Químicos e Bioquímicos). Centro Universitário do Instituto de Mauá de Tecnologia. São Caetano do Sul, 2008.
- ANDRADE, R. A.; OLIVEIRA, I. V. M.; MARTINS, A. B. G. Influência da Condição e Período de Armazenamento na Germinação de Sementes de Pitaya Vermelha. **Revista Brasileira de Fruticultura**, v.27, n.1, p.168-170, 2005.
- ANDRADE, R. A.; MARTINS, A. B. G.; SILVA, M. T. H. Influência da condição e período de armazenamento na germinação de sementes de pitaya vermelha. **Revista Brasileira de Fruticultura**, v.29, n.1, p.183-186, 2007.
- ANJO, D.F.C. Alimentos Funcionais em Angiologia e Cirurgia Vascular. **Jornal Vascular Brasileiro**, v.3, n.2, p.145-154, 2004.
- ANTUNES, A. E. C.; CAZETTO, T. F.; BOLINI, H. M. A. Iogurtes Desnatados Probióticos adicionados de concentrado protéico do soro de leite: perfil de textura, sinérese e análise sensorial. **Revista Alimentos e Nutrição**, v.15, n.2, p.107-114, 2004.
- ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTRY. **Official Methods of Analysis of the Association of Official Analytical Chemistry**. Washington: AOAC, 1992.
- AWAISHEH, S. S.; HADDADIN, M. S. Y.; ROBINSON, R. K. Incorporation of selected nutrceuticals and probiotic bactéria into fermented Milk. **International Dairy Journal**, v.5, n.1, p.1184-1190, 2005.
- AZEREDO, H. M. C. Encapsulação: Aplicação à tecnologia de Alimentos. **Revista Alimentos e Nutrição**, v.16, p.89-97, 2005.
- _____. **NBR 14141**: Escalas utilizadas em análise sensorial. Rio de Janeiro: ABNT, 1998.

- BALDISSERA, A. C.; BETTA, F. D.; PENNA, A. L. B.; LINDER, J. de D. Alimentos funcionais: uma nova fronteira para o desenvolvimento de bebidas protéicas a base de soro de leite. **Semina: Ciências Agrárias**, v. 32, n. 4, p. 1497-1526, 2011.
- BARBOSA, S. J. **Qualidade de suco em pó de mistura de frutas obtido por** *spray drying***.** 2010. 122f. Dissertação (Mestrado em Produção Vegetal). Universidade Estadual Montes Claros, Janaúba MG, 2010.
- BARBOSA, M. I. M. J. **Microcápsulas de bixina:** obtenção, aplicação e estudos de fotodegradação em sistemas-modelo. 2009. 155f. Tese (Doutorado em Engenharia de Alimentos). Universidade Estadual de Campinas, São Paulo, 2009.
- BARROS NETO, B.; SCARMINIO, I. S.; BRUNS, R. E. Como Fazer Experimentos: **Pesquisa e Desenvolvimento na Ciência e na Indústri**a. Editora da Unicamp, 2001.
- BASTOS D. C.; PIO, R.; FILHO, J. A. S.; LIBARDI, M. N.; ALMEIDA, L. F. P.; GALUCHI, T. P. D.; BAKKER, S.T. Propagação da pitaia "vermelha" por estaquia. **Revista Ciência e Agrotecnologia**, v.30, n.6, p. 1106-1109, 2006.
- BEHLING, E. B.; SENDÃO, M. C.; FRANCESCATO, H. D. C.; ANTUNES, L. M. G.; BIANCHI, M. L. P. Flavonóide quercetina: Aspectos gerais e ações biológicas. **Revista Alimentação e Nutrição**, v.15, n.3, p. 285-292, 2004.
- BELLEC, F.; VILLANT, F.; IMBERT, E. Pitahaia (*Hylocereus* spp.):a new crop, a market with a future. **Fruits**, v.61, n.4, p.237–250, 2006.
- BEHMER, M. L. A. Tecnologia do Leite, Queijo, Manteiga, Caseína, Iogurte, Sorvetes e Instalações: Produção, Industrialização, Análise. São Paulo: Nobel, 1984.
- BEZERRA, M. F. Caracterização físico-química, reológica e sensorial de iogurte obtido pela mistura dos leites bubalino e caprino. 2010. Dissertação (Mestrado em Engenharia Química). Universidade Federal do Rio Grande do Norte, Natal, 2010.
- BORTOLOZO, E. Q.; QUADROS, M. H.R. Aplicação de inulina em sucralose em iogurte. **Revista Brasileira de Tecnologia Agroindustrial,** v.1, n.1, p.37-47, 2007.
- BOX, G. E. P.; HUNTER, W. G.; HUNTER, J. S. Statistic for Experimenters. An Introduction to Design, Data Analysis and Model Building. New York: John Wiley & Sons, inc., 1978.
- BORGES, K. C.; MEDEIROS, A. C. L.; CORREIA, R. T. P. Buffalo's milk yogurt flavored with cajá (*Spondiaslutea* L.) syrup: physical-chemical and sensory acceptance between 11 to 16 year-old individuals. **Revista Alimentos e Nutrição**, Araraquara, v. 20, n. 2, p. 295-300, 2009.
- BRAGA, A. C. C.; NETO, E. F. A.; VILHENA, M. J. V. Elaboração e caracterização de iogurtes adicionados de polpa e de xarope de mangostão (*Garcinia mangostana* 1.). **Revista Brasileira de Produtos Agroindustriais**, Campina Grande, v.14, n.1, p.77-84, 2012.

BRASIL. Agência Nacional de Vigilância Sanitária. Aprova o Regulamento Técnico referente a Alimentos Adicionados de Nutrientes Essenciais. **Portaria nº 31, de 13 de janeiro de 1998**. Disponível em:<http://www.anvisa.gov.br/anvisalegis/portarias/31_98.htm> Acesso em: 10 de Janeiro de 2015.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 46 de 23 de outubro de 2007. Adota o Regulamento Técnico de Identidade e Qualidade de Leites Fermentados, anexo à presente Instrução Normativa. **Diário Oficial da República Federativa do Brasil**, Brasília, 18 out. 2007. Seção 1.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Obtenção de leite com qualidade e elaboração de derivados.** Versão – online. Documento 154. ISSN 1806 – 9193, Junho, 2006.

BRASIL. RDC Nº 12, de 2 de janeiro de 2001. Regulamento Técnico sobre os padrões microbiológicos para alimentos. **Diário Oficial da União- Poder Executivo**, de 10 de janeiro de 2001.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Portaria Nº 398, DE 30 DE Abril de 1999. Aprova o regulamento técnico que estabelece as diretrizes básicas para análise e comprovação de propriedades funcionais e ou de saúde alegadas em rotulagem de alimentos. **Diário Oficial da União**, 03 de maio de 1999.

BRASIL. Ministério da Agricultura, do Abastecimento e da Reforma Agrária. Portaria nº 146, de 7 de março de 1996. Regulamento Técnico de Identidade e Qualidade do Leite UAT (UHT). **Diário Oficial da República Federativa do Brasil**, Brasília, 11 mar. 1996. Seção 1, p. 3977.

CAI, Y.Z.; CORKE, H. Production and properties of *spray-dried* amaranthus betacyanin pigments. **Journal of Food Science**, v.65, p.1248-1252, 2000.

CAMMERER, M. A. Efeitos de uma dieta rica em flavonoides sobre o estresse oxidativo, inflamação e perfil lipídico em pacientes submetidos à angioplastia coronária com implante de stent: ensaio clínico randomizado. 2012. 103f. Tese (Doutorado em Cardiologia e Ciências Cardiovasculares). Universidade Federal do Rio Grande do Sul - UFRGS. Porto Alegre, 2012.

CANDIDO, L. M. B.; CAMPOS, A. M. Alimentos funcionais: Uma revisão. **Boletim da SBCTA,** v.29, n.2, p.193-203. 2005.

CASTRO, D. S. B. Obtenção de extrato de pitaya e avaliação da sua atividade antioxidante e antiproliferativa em linhagens celulares humanas de câncer de mama. 2015. 91f. Dissertação (Mestrado em Alimentos e Nutrição). Universidade Federal do Estado do Rio de Janeiro. Rio de Janeiro, 2015.

CHITARRA, M.I.F.; CHITARRA, A.B. **Pós-colheita de Frutas e Hortaliças: Fisiologia e Manuseio**. 2.ed. Lavras: UFLA, 2005, 785p.

- COSTA, M. P. Estudo da Atividade Antioxidante de Frutas Tropicais Exóticas sobre Espécies Reativas de Oxigênio de importância Biológica em Ensaios Modelos. 2010. 129f. Dissertação (Mestrado Biociências e Biotecnologia Aplicada á Farmácia). Faculdade de Ciências Farmacêuticas de Araraquara. Universidade Estadual Paulista UNESP, 2010.
- CRUZ, E. N. Características físico-químicas e sensoriais do iogurte misto produzido com leites caprino e bovino. 2012. 52f. Dissertação (Mestrado em Tecnologia Agroalimentar). Universidade Federal da Paraíba UFPB. Bananeiras, 2012.
- DONADIO, L. C. Pitaia. Revista Brasileira de Fruticultura, v.31, n.3, p.637-929, 2009.
- DORNAS, W. C.; OLIVEIRA, T. T.; RODRIGUES-DAS-DORES, R. G.; SANTOS, A. F.; NAGEM, T. J. Flavonoides: potencial terapêutico no estresse oxidativo. **Revista de Ciências Farmacêuticas Básica e Aplicada**, v.28, n.3, p.241- 249, 2007.
- DUARTE, M. H. Armazenamento e qualidade de pitaia [*Hylocereus undat*us (Haw.) Britton & Rose] submetida à adubação orgânica. 2013. 118f. Dissertação (Mestrado em Agroquímica) Universidade Federal de Lavras UFLA. Minas Gerais, 2013.
- DUTCOSKY, S. D. **Análise Sensorial de Alimentos.** 4 ed. Curitiba: Champagnat, 2013. 531p.
- EASTMAN, J. E; MOORE, C. O. Cold water soluble granular starch for gelled food composition. U.S. Patent 4465702, 1984.
- ERSUS, S.; YURDAGEL, U. Microencapsulation of anthocyanin pigments of black carrot (*Daucuscarota* L.) by spray dryer. **Journal of Food Engineering**, v.80, n.3, p.805-812, 2007.
- FANG, Z.; BHANDARI, B. Effect of *spray drying* and storage on the stability of bayberry polyphenols. **Food Chemistry**, v.129, p.1139-1147, 2011.
- FALEIRO, F. G.; LIMA, C. A.; COHEN, K. O.; JUNQUEIRA, N. T. V.; BELLON, G.; CASTELO BRANCO, M. T.; FUHRMANN, E.; LEÃO, A. J. P.; OLIVEIRA, R. R. Caracterização físico-química e de compostos funcionais em frutos de pitaya. In: CONGRESSO BRASILEIRO DE FRUTICULTURA, v.21, 2010. Natal: SBF, 2010.
- FAZAELI, M.; EMAM-DJOMEH, Z.; ASHTARI, A.K.; OMID, M. Effect of *spray drying* conditions and feed composition on the physical properties of black mulberry juice power. **Food and Bioproducts Processing**, v. 9, p.667-675, 2012.
- FELLOWS, P.J. **Tecnologia do Processamento de Alimentos: Princípios e Prática**. 2ª edição. Artmed: Porto Alegre. 2006. 602p.
- FERNANDES, A. M. **Avaliação do iogurte produzido com leite contendo diferentes níveis de células somáticas.** 2003. 87f. Dissertação (Mestrado em Zootecnia) Universidade de São Paulo. Pirassununga SP, 2003.
- FERRARI, C.C.; RIBEIRO, C.P.; AGUIRRE, J.M. Secagem por atomização de polpa de amora-preta usando maltodextrina como agente carreador. **Brazilian Journal of Food Technology**, Campinas, v.15, n.2, p.157-165, 2012.

- FERREIRA, L. C. **Desenvolvimento de iogurtes probióticos e simbióticos sabor cajá** (*Spondias mombin.* L.). 2012. 94f. Dissertação (mestrado em Ciência e Tecnologia de Alimentos). Universidade Federal Rural de Pernambuco. Recife, 2012.
- FERREIRA R.M.A.; AROUCHA E.M.M.; SOUZA P.A.; QUEIROZ R.F.; PONTES FILHO F.S.T. Ponto de Colheita da Acerola Visando à Produção Industrial de Polpa. **Revista Verde de Agroecologia e Desenvolvimento Sustentável**, v.4, n.2, p.13-16, 2009.
- FERREIRA, C. L. L. F. **Produtos Lácteos Fermentados: Aspectos Bioquímicos e Tecnológicos.** Viçosa, UFV, 2001.
- FORSYTHE, S. J. Microbiologia da segurança alimentar. Porto Alegre: Artmed, 2002.
- FRANCIS, F. J. Analysis of anthocyanins. In: MARAKIS, P. (ed.). Anthocyanins as food colors. New York: **Academic Press**, p.181-207, 1982.
- GOMES, P.M.A.; FIGUEIRÊDO, R.M.F.; QUEIROZ, A.J.M. Caracterização e isotermas de adsorção de umidade da polpa de acerola em pó. **Revista Brasileira de Produtos Agroindustriais**, v.4, n.2, p.157-165, 2002.
- HAMERSKI, L.; REZENDE, M. J. C.; SILVA, B. V. Usando as Cores da Natureza para Atender aos Desejos do Consumidor: Substâncias Naturais como Corantes na Indústria Alimentícia. **Revista Virtual de Química**, v.5, n.3, p. 394-420, 2013.
- ISLAM, M. Z.; HOQUE, M. M.; RAHMAN, M. M. Studies on the Processing and Preservation of Dragon Fruit (*Hylocereus undatus*) Jelly. **The Agriculturists**, Bangladesh, v.10, n.2, p.29-35, 2012.
- INSTITUTO ADOLFO LUTZ Normas Analíticas: Métodos Químicos e Físicos para a Análise de Alimentos. 4 ed. São Paulo: Instituto Adolfo Lutz, 2008.
- INSTITUTO BRASILEIRO DE FRUTAS. **Estrutura da produção brasileira**. Disponível em:http://www.brazilianfruit.org.br/ /Pbr/Fruticultura/Fruticultura.asp>. Acesso em: 15 jan. 2015.
- KITAMURA, Y.; ITOH, H.; ECHIZEN, H.; SATAKE, T. Experimental vacuum spray drying of probiotic foods included with lactic acid bactéria. **Journal of Food Processing and Preservation**, v.33, p.714-726, 2009.
- KOBLITZ, M. G. B. Matérias-primas Alimentícias: Composição e Controle de Qualidade. Rio de Janeiro: Guanabara Koogan, p. 147-176, 2011.
- LAGUNA, L. E.; EGITO, A. S. **Iogurte de leite de cabra adicionado de frutas tropicais.** Circular Técnica, 32. Embrapa Caprinos. *Versão online*. Sobral CE. Dezembro de 2006. Disponível em:
- http://www.agencia.cnptia.embrapa.br/Repositorio/iogurteleitecabraftropical_000feblq67f02 wx5eo006u55tmwc2f89.pdf>. Acesso em: 09/07/2015.

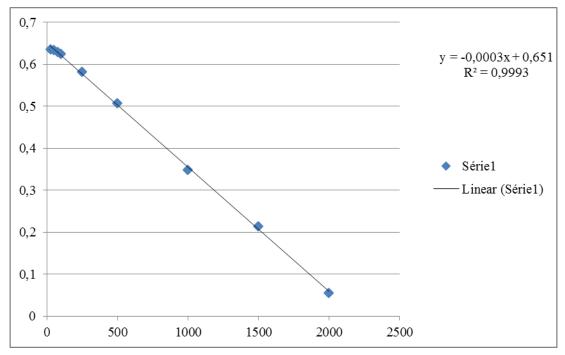
- LANDIM, E. M. C. **Obtenção, caracterização e avaliação da estabilidade de pigmentos naturais microencapsulados**. 2008. 135f. Dissertação (Mestrado em Tecnologia de Alimentos). Universidade Federal do Ceará UFC. Fortaleza, 2008.
- LANNES, S. C. S.; MEDEIROS, M. L. Processamento de achocolatado de cupuaçu por *spray-dryer*. **Revista Brasileira de Ciências Farmacêuticas**, v.39, n.1, p.115-123, 2003.
- LATADO, R. R.; TOGNATO, P. C.; SILVA-STENICO, M. E.; NASCIMENTO, L. M. do.; SANTOS, P. C. dos. Acúmulo de antocianinas e características físicas e químicas de frutos de laranjas sanguíneas durante o armazenamento a frio. **Revista Brasileira de Fruticultura**, v.30, n.3, p.604-610, 2008.
- LIMA, V. L. A. G.; MELO, E. A.; LIMA, D. E. S. Fenólicos e carotenóides totais em pitanga. **Scientia Agricola**, v. 59, n.3, p.447-450, 2002.
- LIMA, C. A. Caracterização, propagação e melhoramento genético de pitaya comercial e nativa do cerrado. 2013. 140f. Tese (Doutorado em Agronomia) Faculdade de Agronomia e Medicina Veterinária. Brasília, 2013.
- LIMA, C. A.; FALEIRO, F. G.; JUNQUEIRA, N. T. V.; COHEN, K. O.; GUIMARÃES, T. G. Características físico-químicas, polifenóis e flavonoides amarelos em frutos de espécies de pitaias comerciais e nativas do Cerrado. **Revista Brasileira de Fruticultura**, v.35, n.2, p.565-570, 2013.
- LIMA, C. A.; COHEN, K. O.; FALEIRO, F. G.; JUNQUEIRA, N. T. V.; BELLON, G.; BRANCO, M. T. C.; FUHRMANN, E.; LEÃO, A. J. P.; OLIVEIRA, R. R. **Caracterização físico-química e de compostos funcionais em frutos de pitaya.** *In*: Congresso brasileiro de fruticultura, 21., Frutas: saúde, inovação e responsabilidade. Natal: SBF, 2010. Disponível em:http://www.alice.cnptia.embrapa.br/handle/doc/865923 Acesso em: 20 de Fevereiro de 2015.
- MAHATTANATAWEEK, K.; MANTHEY, J. A.; TALCOTT, S. T.; GOODNER, K.; BALDWIN, E. A. Total antioxidant activity and fiber content of select Florida-grown tropical fruits. **Journal of Agricultural and Food Chemistry**, Easton, v. 54, n. 19, p.7355-7363, 2006.
- MALLMANN, L. P. Extração de Antocianinas a partir de casca de Berinjela (*Solanum melongena*). 2011. 172f. Monografia (Graduação em Engenharia de Alimentos). Universidade Federal do Rio Grande do Sul UFRGS, Porto Alegre, 2011.
- MARQUES, V.B.; MOREIRA, R. A.; RAMOS, J. D.; ARAÚJO, N. A.; SILVA, F. O. R. Fenologia reprodutiva de pitaia vermelha no município de Lavras, MG. **Revista Ciência Rural**, v.41, n.6, p.984-987, 2011.
- MARTINS, G. H.; KWIATKOWSKI, A.; BRACHT, L.; SRUTKOSKE, C. L. Q.; HAMINIUK, C. W. I. Perfil físico-químico, sensorial e reológico de iogurte elaborado com extrato hidrossolúvel de soja e suplementado com inulina. **Revista Brasileira de Produtos Agroindustriais**, v.15, n.1, p.93-102, 2013.

- MATTÉ, G. M.; ROSA, S. A Tecnologia da Microencapsulação através das Microesferas de Quitosana. Revista Iberoamericana de Polímeros, v.14, n.5, p.206-218, 2013.
- MAZOCHI, V.; MATOS JÚNIOR, F. E.; VAL, C. H.; DINIZ, D. N.; RESENDE, A. F.; NICOLI, J. R.; SILVA, A. M. Iogurte probiótico produzido com leite de cabra suplementado com *Bifidobacterium spp.* **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**, v.62, n.6, p.1484-1420, 2010.
- MELO, K. S. **Secagem de Polpa do fruto do Mandacaru**. 2008. 132f. Dissertação (Mestrado em Engenharia Agrícola). Universidade Federal de Campina Grande UFCG. Campina Grande, 2008.
- MEDEIROS, F. C.; ANDRADE, L. F.; APOLINÁRIO, J. R.; SILVA, A. O.; SANTOS, E. P. Composição centesimal de iogurtes comercializados nos municípios de Bananeiras PB. II Jornada Nacional da Agroindústria, Bananeiras, 2007.
- MENDES, L. G. **Microencapsulação do corante natural de urucum:** uma análise da eficiência da goma do cajueiro como material de parede. 2012. 132f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Universidade Federal do Ceará UFC. Fortaleza, 2012.
- MESQUITA, R. V. S. C.; NETO, A. F.; TEIXEIRA, F.; SILVA, V. O. Elaboração, análise físico-química e aceitação do iogurte com adição do tamarindo "doce" (*Tamarindus indica* L.). **Revista Brasileira de Produtos Agroindustriais**, v.14, n.4, p.381-387, 2012.
- MOLETA, C.B. Elaboração de iogurte caseiro e avaliação físico-química, em relação a iogurte industrializado. 2006. Trabalho de conclusão de curso (Graduação em Nutrição) Faculdade Assis Gurgacz, Cascavel PR, 2006.
- MONTEIRO, A. R. G.; MARTINS, M. F. Processo de desenvolvimento de produtos na indústria de alimentos: Estudo de caso em um fabricante de biscoitos de grande porte. V CBGDP, p.2-10, 2005.
- MORAES, F.; COLLA, L. M. Alimentos Funcionais e Nutracêuticos: Definições, Legislação e Benefícios à Saúde. **Revista Eletrônica de Farmácia**, v.3, n.2, p.109-122, 2006.
- MOREIRA, R. A.; CRUZ, M. C. M. Fruticultura: Pitaya das mais diversas formas e cores. **Jornal Democrata**, v. 1143, Primeiro Caderno última página, 2011. Disponível em: http://fruticultura.webnode.com.br/news/pitaia-das-mais-diversas-formas-e-cores/ Acesso em: 16 de jan. de 2015.
- MOURA, S. M. Estabilidade da acerola em pó oriunda do cultivo orgânico. 2010. 115f. Dissertação (Mestrado em Tecnologia de Alimentos). Universidade Federal do Ceará UFC. Fortaleza, 2010.
- MUNCK, A. V., RODRIGUES, F. C. Produção de Manteiga, Ricota, Doce de Leite, Sorvete, Iogurte e Bebida Láctea. Centro de Produções Técnicas, 2004. 2 ed.

- NASCIMENTO, M. S.; SILVA, N.; CATANOZI, M. P. L. M.; SILVA, K. C. Avaliação microbiológica de frutas e hortaliças frescas, comercializadas no município de Campinas, SP. **Revista Higiene Alimentar**, v.17, n.114, p.73-76, 2003.
- NOGUEIRA, C. Funcionais e Nutracêuticos. **Publisher Assistant Editora Insumos.** Disponível em:http://www.insumos.com.br/funcionais_e_nutraceuticos/materias/77.pdf>. Acesso em: 22 de Junho de 2015.
- NUNES, E. N.; SOUSA, A. S. B.; LUCENA, C. M.; SILVA, S. M.; LUCENA, R. F. P.; ALVES, C. A. B.; ALVES, R. E. Pitaia (*Hylocereus* sp.):Uma revisão para o Brasil. **Revista Gaia Scientia**, v.8, n.1, p.90-98, 2014.
- OLIVEIRA, L. A.; ABREU, W. C., OLIVEIRA, C. L.; PINTO, K. M.; CARVALHO, G. B. M.; BARCELOS, M.F.P. Composição química da pitaia vermelha (*Hylocereus polyrhizus*) e branca (*Hylocereus undatus*). Anais... XIX Congresso de pós-graduação da UFLA, 2010. Disponível em:http://www.sbpcnet.org.br/livro/lavras/resumos/1180.pdf acesso em: 20 de fevereiro de 2015.
- OLIVEIRA, M. I. S.; TONON, R. V.; NOGUEIRA, R. I.; CABRAL, L. M. C. Estabilidade da polpa de morango atomizada utilizando diferentes agentes carreadores. **Brazilian Journal of Food Technology**, v.16, n.4, p.310-318, 2013.
- OLIVEIRA, L. M. N. Quantificação de rutina, atividades antioxidantes e antimicrobiana de extratos de polpas e subprodutos de frutas tropicais. 2014. 87f. Dissertação (Ciência e Tecnologia de Alimentos). Universidade Federal do Ceará, Fortaleza, 2014.
- OLIVEIRA, I. R. W. Z.; FATIBELLO-FILHO, O.; FERNANDES, S. C.; VIEIRA, I. C. Imobilização da Lacase em Micropartículas de Quitosana obtidas por *spray drying* e usadas na construção de Biossensores. **Revista Química Nova**, v.32, n.5, 2009.
- OLIVEIRA, K.A.; RIBEIRO, L.S.; OLIVEIRA, G. V.; PEREIRA, J.M.; MENDONÇA, R.C.S.; ASSUMPÇÃO, C.F. Desenvolvimento de formulação de iogurte de araticum e estudo da aceitação sensorial. **Revista Alimentos e Nutrição**, v.19, n.3, p.277-281, 2008.
- ORDOÑEZ, J. A. **Tecnologia de Alimentos Origem Animal**. Porto Alegre: Artemed, v. 2, 2005.
- PACHECO, M. Tabela de Equivalentes, Medidas Caseiras e Composição Química dos Alimentos. Rio de Janeiro: Editora Rubio, 2ª. Ed., 2011.
- PALU, A.A.; TIBANA, A.; TEIXEIRA, L.M., MIGUEL, M.A.L., PYRRHO, A.S.; LOPES, H.R. Avaliação microbiológica de frutas e hortaliças frescas, servidas em restaurantes self-service privados, da Universidade Federal do Rio de Janeiro. **Revista Higiene Alimentar**, v.16, n.100, p.67-71, 2002.
- PAULA, N. R. R.; DAHMER, A. M.; RAMOS, A. A.; MOISÉS, E. A.; SILVA, N. C. R.; FRANQUIS, R. Q. Avaliação sensorial e intenção de compra de iogurtes batidos acrescidos de diferentes aromatizantes produzidos no IFRO/Campus Colorado do Oeste RO. VII CONNEPI Tocantins. Palmas, 2012. Disponível

- em:http://propi.ifto.edu.br/ocs/index.php/connepi/vii/paper/viewFile/3672/3080. Acesso em: 06 de Julho de 2015.
- PEDRO, M. A.M. Influencia de encapsulantes e do método de secagem nas propriedades físico-químicas e atributos de qualidade de polpa de maracujá em pó. 2009. 204f. Tese (Doutorado em Biociências)-Universidade Estadual Paulista, São José do Rio Preto, 2009.
- PEGORARO, B. **Desenvolvimento de um iogurte acrescido de geleia de amora-preta** (*morus nigra* **l.**) **e pólen apícola**. 2011. 54f. Trabalho de conclusão de curso TCC (Bacharelado em Química). Universidade Tecnológica Federal do Paraná UTFP. Pato Branco, 2011.
- PENNEY, V.; HENDERSON, G.; BLUM, C.; JOHNSON-GREEN, P. The potential of phytopreservatives and nisin to control microbial spoilage of minimally processed fruit yogurts. **Innovative Food Science & Emerging Technologies**, v.5, p.369-375, 2004.
- PEREIRA, M. A.; ALMEIDA, D. M.; LEAL, E. S. Avaliação da concentração de bactérias láticas viáveis em iogurtes com polpas de frutas. **Revista Higiene Alimentar**, v.23, n. 170/171, p.83-86, 2009.
- PEREIRA, E. D.; PACIULLI, S. O. D.; HENRIQUE, J. R.; ARAÚJO, R. A. B. M.; TERÁN-ORTIZ, G. P. Caracterização de iogurte elaborado a partir de leite de cabra acrescido com polpa de uvaia (*Eugenia uvalhacambess*). *In*: II Jornada Científica da II Semana de Ciências e Tecnologia do IFMG, Campus-Bambuí 19 a 23 de Outubro de 2009. Anais... Bambuí. IFMG, 2009.
- PEREIRA, D. B. C.; SILVA, P. H. F.; COSTA JÚNIOR, L. C. G.; OLIVEIRA, L. L. **Físico-química do leite e derivados: métodos analíticos**. 2. ed. rev. ampl. Juiz de Fora: EPAMIG, 2001.
- PINHEIRO, N. M. S.; FIGUEIREDO, E. A. T.; FIGUEIREDO, R. W.; MAIA, G. A.; SOUZA, P. H. M. de. Avaliação da qualidade microbiológica de frutos minimamente processados comercializados em supermercados de Fortaleza. **Revista Brasileira de Fruticultura**, v.27, n.1,2005.
- QUEK, S. Y.; CHOK, N. K.; SWEDLUND, P. The physicochemical properties of spray-dried watermelon powder. **Chemical Engineering and Processing**, v.46, n.5, p.386-392, 2007.
- QUINTINO, S. S. Avaliação comparativa de iogurte produzido a partir da polpa natural de maracujá (*Passiflora edulis Sims f. flavicarpa Deg.*) e suco artificial. Enciclopédia Biofera, Centro Científico Conhecer, v.8, n.14; p. 1836, 2012.
- RAMOS, T. M.; GAJO, A. A.; PINTO, S. M.; ABREU, L. R.; PINHEIRO, A. C. Perfil de textura de labneh (iogurte grego). **Revista do Instituto de Laticínios "Cândido Tostes"**, v.64, n.369, p.8-12, 2009.
- RENSIS, C. M. V. B.; SOUZA, P. F. F. Análise sensorial de iogurtes light elaborados com adição de fibras de inulina e oligofrutose. **Fazu em Revista**, n.5, p.68-72, 2008.

- RIBEIRO, F. Pitaia é eleita superfruta para 2013. **Nutrição e Saúde**. Disponível em: http://todaela.uol.com.br/nutricao-e-saude/pitaia-e-eleita-superfruta-para-2013. Acesso em: 15 de Julho de 2013.
- RODRIGUES, L. J. **Desenvolvimento e processamento mínimo de pitaya nativa** (*Selenicereus setaceus Rizz.*) **do cerrado brasileiro.** 2010. 164f. Tese (Doutorado em Ciência de Alimentos). Universidade Federal de Lavras: UFLA. Minas Gerais, 2010.
- ROCHA, C.; COBUCCI, R. M. A.; MAITAN, V. R.; SILVA, O. C. Elaboração e avaliação de iogurte sabor frutos do cerrado. **B. CEPPA**, v.26, n.2, p.255-266, 2008.
- RUFINO, M. S. M.; ALVES, R. E.; BRITO, E. S.; MORAIS, S. M.; SAMPAIO, C. G.; PÉREZ-JIMÉNEZ, J.; SAURA-CALIXTO, F. D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS⁻⁺. **Comunicado Técnico online**: Fortaleza CE, 2007.
- SAMPAIO, A. P. A. M.; LACERDA, E. C. Q.; PINTO JÚNIOR, W. R.; FERRÃO, S. P. B.; FERNANDES, S. A. A.; DUTRA, V. S. Elaboração e caracterização físico-química de iogurte grego sabor cappuccino. **Revista Higiene Alimentar**, v.25, n.194-195, 2011.
- SANTANA, A. T. M. C.; BACHIEGA, P.; MORZELLE, M. C.; ABREU, L. R.; SOUZA, E. C. Avaliação Sensorial de Iogurte à base de Pitaia (*hylocereus undatus*), enriquecido com quinoa (*chenopodium quinoa*) e sucralose. **Revista do Instituto de Laticínios "Cândido Tostes"**, v.67, n.389, p.21-25, 2012.
- SANTANA, L. R. R.; SANTOS, L. C. S.; NATALICIO, M. A.; MONDRAGON-BERNALS, O. L.; ELIAS, E. M.; SILVA, C. B.; ZEPKA, L. Q.; MARTINS, I. S. L.; VERNAZA, M. G.; CASTILHO-PIZARRO, C.; BOLINI, H. M. A. Perfil sensorial de iogurte light, sabor pêssego. **Revista Ciência e Tecnologia de Alimentos**, v.26, n.3, p. 619-625, 2006.
- SANTOS, L. M. L. **Produção de pó de acerola verde via atomização** *spray drying* **para elaboração de alimentos enriquecidos com vitamina** C. 2014. 87f. Dissertação (Mestrado em Tecnologia de Alimentos). Instituto Federal de Educação, Ciência e Tecnologia do Ceará IFCE. Limoeiro do Norte, 2014.
- SANTOS, C. A. F. **Desenvolvimento de um novo produto:** Fruta com iogurte. Dissertação de Mestrado. Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa. Lisboa, 2011.
- SATO, S. T. A.; RIBEIRO, S. C. A.; SATO, M. K.; SOUZA, J. N. S. Caracterização física e físico-química de pitayas vermelhas (*Hylocereus costaricensis*) produzidas em três municípios paraenses. **Journal Bioenergy and Food Science**, v.1, n.2, p.58-70, 2014.
- SILVA, A. de O. **Elaboração de sorvete e iogurte de leite de cabra com frutos do semiárido**. 2013. 87f. Dissertação (Mestrado em Engenharia Agrícola). Universidade Federal de Campina Grande UFCG. Campina Grande, 2013.
- SILVA, F. de A. S. **Assistat Versão 7.7 beta**, 2012. Assistência Estatística, Departamento de Engenharia Agrícola do CTRN. Universidade Federal de Campina Grande PB, Brasil, 2012.


- SILVA, A. C. C.; MARTINS, A. B. G.; CAVALLARI, L. L. Qualidade de frutos de Pitaya em função da época de polinização, da fonte de pólen e da coloração da cobertura. **Revista Brasileira de Fruticultura**, v.33, n.4, p.1162-1168, 2011.
- SILVA, N; JUNQUEIRA, V. A.; SILVEIRA, N. F. A.; TANIWAKI, M. H.; SANTOS, R. F. S.; GOMES, R. A. M. **Manual de Métodos de Análise Microbiológica de Alimentos**. 4ª Edição. 624p. Livraria Varela, São Paulo, 2010.
- SILVA, G. J. F.; CONSTANT, P. B. L.; FIGUEIREDO, R. W.; MOURA, S. M. Formulação e estabilidade de corantes de antocianinas extraídas das cascas de jabuticaba (*Myrciariassp.*). **Revista Alimentos e Nutrição**, v.21, n.3, p.429-436, 2010.
- SILVA, E. B.; NASCIMENTO, K. O. Avaliação da Adequação da Rotulagem de Iogurtes. CERES: **NUTRIÇÃO & SAÚDE**, v.2, n.1, p.9-14, 2007.
- SILVA, G. S.; RODRIGUES, M. A. M. Avaliação da qualidade de iogurte aromatizado. **Revista Higiene Alimentar**, v.21, n.140, p.82-85, 2006.
- SIQUEIRA, R. S. **Manual de microbiologia de alimentos**. Centro Nacional de Pesquisa de Tecnologia Agroindustrial de Alimentos (Rio de Janeiro, RJ). Brasília: EMBRAPA SPI, Rio de Janeiro: EMBRAPA CTAA, 1995.
- SOUZA, A.L.R. Estabilização de moléculas bioativas presentes em suco de camu-camu (*Myrciaria dubia (H.B.K) Mc Vaugh*) pela integração processos de Osmose Inversa, Evaporação Osmótica e Atomização. 2012. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos). Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2012.
- SOUSA, T. P. R.; MEDEIROS, J. C.; CRUZ, J. L. Elaboração e aceitação de iogurte adicionado de polpa artesanal de açaí (*Euterpe oleraceae mart.*). **VII CONNEPI** Tocantins. Palmas, 2012.
- SOUZA, I.S.; BRAGA, L.V.; BEZERRA, Y. G.; MAGALHÂES, J.; SILVA, L.M. F. Elaboração de iogurte de polpa de maracujá enriquecido com sementes de linhaça. IV congresso de Pesquisa e Inovação da Rede Norte e Nordeste de Educação Tecnológica, Belém PA, 2009.
- SOUZA, P. H. M.; SOUZA NETO, M. H.; MAIA, G. A. Componentes funcionais nos alimentos. **Boletim da SBCTA**, v.37, n.2, p.127-135. 2003.
- STROHECKER, R.; HENNING, H. M. Analisis de Vitaminas: Métodos Comprovados. Madrid: Paz Montalvo, 1967, 428p.
- TACO. **Tabela brasileira de composição de alimentos**. NEPA UNICAMP 4. ed. rev. e ampl. Campinas: NEPA UNICAMP, 2011.
- TANAKA, D. L. Influência da desidratação por *spray drying* sobre o teor de ácido ascórbico no suco de acerola (*Malpighia ssp*). 2007. 73f. Dissertação (Mestrado em Alimentos e Nutrição). Universidade Estadual Paulista, Araraquara, 2007.

- TEBALDI, V. M. R.; RESENDE, J. G.O. S.; RAMALHO, G. C. A.; OLIVEIRA, T. L. C.; ABREU, L. R.; PICCOLI, R. H. Avaliação microbiológica de bebidas lácteas fermentadas adquiridas no comércio varejista do sul de Minas Gerais. **Ciência e Agrotecnologia**. Lavras, v.31, n.4, p. 1085-1088,2007.
- TONON, R. V., BRABET, C., HUBINGER, M.D. Influência da temperatura do ar de secagem e da concentração de agente carreador sobre as propriedades físico-químicas do suco de açaí em pó. **Ciência e Tecnologia de Alimentos**, v.29, n.2, p.444-450, 2009.
- TOSONI, S. F.; RODRIGUES, V. C. Características físico-químicas e antioxidantes de própolis microencapsulada com diferentes tipos de materiais encapsulantes. 2013. 45f. TCC (Graduação em Tecnologia de Alimentos). Universidade Tecnológica Federal do Paraná UTFPR. Campo Mourão, 2013.
- VALDUGA, E.; LIMA, L.; PRADO, R.; PADILHA, F. F.; TREICHEL, H. Extração, secagem por atomização e microencapsulamento de antocianinas do bagaço da uva isabel (*Vitis labrusca*). **Ciência e Agrotecnologia**, v.32, n.5, p.1568-1574, 2008.
- VIZZOTTO, M.; SCHIAVON, M. V.; MUNHOZ, P. C.; COELHO, D. S.; NACHTIGAL, J. C. Determinação de Compostos Fenólicos, Carotenoides e Atividade Antioxidante em genótipos de pitaia (espécies não determinadas). **XXIII Congresso Brasileiro de Fruticultura**, Cuiabá MT, 2014.
- VOLP, A. C. P.; RENHE, I. R. T.; BARRA, K.; STRINGUETA, P. C. Flavonoides antocianinas: características e propriedades na nutrição e saúde. **Revista Brasileira de Nutrição Clínica**, v.23, n.2, p.141-149, 2008.
- WANG, S.; LANGRISH, T. A review of process simulations and the use of additives in spray drying. **Food Research International**, v.42, p.13-25, 2009.
- WICHIENCHOT, S.; JATUPORNPIPAT, M.; RASTALL, R. A. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. **Food Chemistry**, v.120, n.3, p.850-857, 2010.
- WU, L. C.; HSU, H.W.; CHEN, Y. C.; CHIU, C. C.; LIN, Y. I.; HO, J. A. A. Antioxidant and antiproliferative activities of red pitaya. **Food Chemistry**, v.95, p.319–327, 2006.
- YEMN, E. W.; WILLIS, A. J. The estimations of carbohydrate in plant extracts by anthrone. **The Biochemical Journal**, v.57, p.508-14, 1954.
- ZOPPEI, M. **Pitaia: uma fruta exótica e saudável.** Disponível em: http://mdemulher.abril.com.br/dieta/reportagem/dietas/pitaia-fruta-exotica-703336.shtml Acesso em: 30 de Abril de 2014.

ANEXOS

ANEXO I – CURVA PADRÃO DE TROLOX

Curva padrão de trolox utilizada para calcular o teor de antioxidantes totais no planejamento fatorial composto segundo modelo linear de primeira ordem no processo de atomização de pó de pitaia vermelha por *spray drying*.

Fonte: Autor (2015).

ANEXO II - ANOVAS

Ha -Análise estatística em um planejamento fatorial composto segundo modelo quadrático para A otimização do processo de atomização de pó de pitaia vermelha por*spray drying* para a resposta rendimento (%).

resposta rendimento (%).										
	Effect Esti	ffect Estimates; Var.:Rendimento (%); R-sqr=,61483; Adj:,22967 (ANALISE COMPLETA (19E))								
	3 factors,	3 factors, 1 Blocks, 19 Runs; MS Residual=34,56194								
	DV: Rendi	V: Rendimento (%)								
	Effect	Std.Err.	t(9)	р	-95,%	+95,%	Coeff.	Std.Err.	-95,%	+95,%
Factor					Cnf.Limt	Cnf.Limt		Coeff.	Cnf.Limt	Cnf.Limt
Mean/Interc.	47,00861	2,626052	17,90087	0,000000	41,0681	52,94915	47,00861	2,626052	41,06807	52,94915
(1)T _{entrada} (°C)(L)	3,08183	3,181660	0,96862	0,358041	-4,1156	10,27925	1,54092	1,590830	-2,05779	5,13962
T _{entrada} (°C)(Q)	1,85397	3,182434	0,58256	0,574490	-5,3452	9,05314	0,92699	1,591217	-2,67260	4,52657
(2)Q _{alim} (mL.min ⁻¹)(L)	-8,52733	3,181660	-2,68015	0,025200	-15,7247	-1,32991	-4,26366	1,590830	-7,86237	-0,66496
Q _{alim} (mL.min ⁻¹)(Q)	1,50212	3,182434	0,47200	0,648159	-5,6970	8,70128	0,75106	1,591217	-2,84852	4,35064
(3)Q _{asp} (%)(L)	3,50500	3,181660	1,10163	0,299212	-3,6924	10,70241	1,75250	1,590830	-1,84621	5,35121
Q _{asp} (%)(Q)	6,59823	3,182434	2,07333	0,067996	-0,6009	13,79740	3,29912	1,591217	-0,30047	6,89870
1L by 2L	1,79810	4,157039	0,43254	0,675526	-7,6058	11,20198	0,89905	2,078519	-3,80289	5,60099
1L by 3L	2,20770	4,157039	0,53108	0,608221	-7,1962	11,61158	1,10385	2,078519	-3,59809	5,80579
2L by 3L	-1,69670	4,157039	-0,40815	0,692702	-11,1006	7,70718	-0,84835	2,078519	-5,55029	3,85359

Fonte: Autor (2015)

IIb -Análise estatística em um planejamento fatorial composto segundo modelo quadráticopara otimização do processo de secagem de pó de pitaia vermelha em *spray drying* para o teor de antioxidantes totais (mg Trolox/g).

	ı	ffect Estimates; Var.:T.AT (mg/g); R-sqr=,35741; Adj:0, (ANALISE COMPLETA (19E))								
	3 factors,	factors, 1 Blocks, 19 Runs; MS Residual=41,69989								
	DV: T.AT	(mg/g)								
	Effect	Std.Err.	t(9)	р	-95,%	+95,%	Coeff.	Std.Err.	-95,%	+95,%
Factor					Cnf.Limt	Cnf.Limt		Coeff.	Cnf.Limt	Cnf.Limt
Mean/Interc.	22,71649	2,884507	7,87534	0,000025	16,1913	29,24170	22,71649	2,884507	16,19128	29,24170
(1)T _{entrada} (°C)(L)	0,12713	3,494798	0,03638	0,971775	-7,7786	8,03292	0,06357	1,747399	-3,88932	4,01646
T _{entrada} (°C)(Q)	-5,85849	3,495648	-1,67594	0,128069	-13,7662	2,04922	-2,92924	1,747824	-6,88310	1,02461
(2)Q _{alim} (mL.min ⁻¹)(L)	-0,04393	3,494798	-0,01257	0,990244	-7,9497	7,86185	-0,02197	1,747399	-3,97486	3,93092
Q _{alim} (mL.min ⁻¹)(Q)	-4,79783	3,495648	-1,37251	0,203134	-12,7055	3,10988	-2,39891	1,747824	-6,35277	1,55494
(3)Q _{asp} (%)(L)	0,58312	3,494798	0,16685	0,871174	-7,3227	8,48890	0,29156	1,747399	-3,66133	4,24445
Q _{asp} (%)(Q)	-4,44427	3,495648	-1,27137	0,235468	-12,3520	3,46343	-2,22214	1,747824	-6,17599	1,73172
1L by 2L	0,77500	4,566174	0,16973	0,868979	-9,5544	11,10440	0,38750	2,283087	-4,77720	5,55220
1L by 3L	0,42500	4,566174	0,09308	0,927882	-9,9044	10,75440	0,21250	2,283087	-4,95220	5,37720
2L by 3L	0,75000	4,566174	0,16425	0,873163	-9,5794	11,07940	0,37500	2,283087	-4,78970	5,53970

Fonte: Autor (2015).

ANEXO III - TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

"PRODUÇÃO DE PÓ DE PITAIA VERMELHA (Hylocereus costaricensis) VIA ATOMIZAÇÃO SPRAY DRYING PARA ENRIQUECIMENTO DE IOGURTE TIPO GREGO"

TÍTULO DA PESQUISA: Produção de pó de pitaia vermelha (*Hylocereus costaricensis*) via atomização *spray drying* para enriquecimento de iogurte tipo grego.

PESQUISADOR RESPONSÁVEL: Rinaldo dos Santos Araújo

O Sr. (a) está sendo convidado(a) a participar desta pesquisa que irá investigar a aceitação de iogurte tipo grego enriquecido com pó de pitaia vermelha. O presente trabalho visa analisar a aceitação, frequência de consumo e intenção de compra deste produto.

- **1. PARTICIPAÇÃO NA PESQUISA:** Ao participar desta pesquisa o Sr. (a) será submetido (a) a provar as amostras e irá responder sobre a aceitação, frequência de consumo e intenção de compra deste produto. Lembramos que sua participação é voluntária, e que o (a) Sr. (a) tem a liberdade de não querer participar, e pode desistir em qualquer momento, mesmo após ter iniciado a avaliação.
- **2. RISCOS E DESCONFORTOS:** A probabilidade de desconfortos ao participar desse procedimento é muito reduzida, por se tratar da avaliação sensorial de um produto alimentício. Quanto aos riscos, são extremamente baixos, uma vez que o produto será processado com todo o rigor exigido para a manipulação de alimentos. O sigilo dos dados será assegurado aos voluntários que participarem da pesquisa.
- **3. BENEFÍCIOS:** Os benefícios esperados com o estudo são no sentido de estudar a influência do enriquecimento de iogurte tipo grego utilizando o pó de pitaia vermelha produzido por atomização *spray drying* utilizando-o como alternativa de um alimento inovador, prático e funcional.
- **4. FORMAS DE ASSISTÊNCIA:** Se o (a) Sr. (a) precisar de alguma orientação por se sentir prejudicado (a) por causa da pesquisa, poderá se encaminhar à responsável da pesquisa para esclarecimentos e /ou posicionamentos pertinentes ao prejuízo.

109

5. CONFIDENCIALIDADE: Todas as informações que o (a) Sr. (a) nos fornecer ou que

sejam conseguidas por avaliações e entrevistas serão utilizadas somente para esta pesquisa. As

respostas, dados pessoais ficarão em segredo e o seu nome não aparecerá em lugar nenhum

dos formulários, nem quando os resultados forem apresentados.

6. ESCLARECIMENTOS: Se o (a) Sr. (a) tiver alguma dúvida a respeito da pesquisa e/ou

dos métodos utilizados em sua realização, pode procurar a qualquer momento o pesquisador

responsável.

Nome do pesquisador responsável: Rinaldo dos Santos Araújo

Endereço: Avenida 13 de Maio, Bairro Benfica, Fortaleza, Ceará.

Telefone para contato: (85) 3307.3610 / E-mail: rinaldo@ifce.edu.br

Horário de atendimento: 08:00 às 17:00h

Se desejar obter informações sobre os seus direitos e os aspectos éticos envolvidos na pesquisa, poderá consultar a Coordenação do Curso de Mestrado em Tecnologia de Alimentos – IFCE, Campus Limoeiro do Norte – CE.

Coordenação do Curso de Mestrado - IFCE, Campus Limoeiro do Norte - CE.

Rua Estevam Remígio, 1145, Bairro Centro.

CEP 62930-000

Telefone (88) 3447-6400

7. RESSARCIMENTO DAS DESPESAS: Caso aceite participar da pesquisa, não receberá

nenhuma compensação financeira.

8. CONCORDÂNCIA NA PARTICIPAÇÃO: Se o (a) Sr. (a) estiver de acordo em

participar, o Sr.(a) deverá preencher e assinar o Termo de Consentimento Pós-esclarecido que

se segue, e receberá uma cópia deste Termo.

CONSENTIMENTO PÓS-INFORMADO

	Pelo	presente	instrumento	que	atende	às	exigên	icias	legais,	0
Sr.(a)					 ,	porta	dor(a)	da	cédula	de
identidade				declara	que, após	leitur	a minu	ciosa	do Termo	de
Consentim	ento Li	vre e Esclai	recido (TCLE),	, teve o _l	ortunidad	le de i	fazer pe	rgunt	as, esclare	ecer
dúvidas q	ue fora	ım devidan	nente explicad	as pelo	s pesquis	sadore	s, cient	te do	s serviço	s e
procedime	ntos aos	s quais será	submetido e, n	ão resta	ndo quaiso	quer d	lúvidas	a resp	eito do lio	do e
explicado,	firma	seu CONS	ENTIMENTO	LIVRI	E E ESC	LARI	ECIDO	em a	autorizar	sua
participaçã	io volur	ntária nesta _l	pesquisa.							
				E, po	or estar de	acord	o, assin	a o pr	esente ter	mo.
		Lin	noeiro do Norte	e-Ce	de				_ de	
					Assinat	ura do	particij	pante		
							Impres	ssão d	lactiloscó	oica
							1		•	

Assinatura do Pesquisador

ANEXO IV – MODELO DE FICHA UTILIZADA NO TESTE SENSORIAL DE FREQUENCIA DE CONSUMO

FICHA DE ANÁLISE SENSORIAL DE IOGURTE TIPO GREGO ENRIQUECIDO COM PÓ DE PITAIA VERMELHA

FREQUÊNCIA DE CONSUMO DE IOGURTE TIPO GREGO COMERCIAL

Marque	uma	das	opções	abaixo	apresentadas	sobre a	a frequência	de	consumo	de	iogurte	tipo
grego de	marc	ca co	omercia	l.								

() Diariamente
() Moderadamente
() Quinzenalmente
() Mensalmente
() Raramente
() Nunca consumi

ANEXO V – MODELO DE FICHA UTILIZADA NO TESTE SENSORIAL DE ACEITAÇÃO

FICHA DE ANÁLISE SENSORIAL DE IOGURTE TIPO GREGO ENRIQUECIDO COM PÓ DE PITAIA VERMELHA

SEXO: ()Masculino ()Feminino DATA:/ FAIXA ETÁRIA: () Menor de 18 () 18-26 anos () 27-34 anos () 35-42 anos () 43-50 anos () mais de 51 FORMAÇÃO: () Pós-graduação () Nível superior completo () Nível superior incompleto () Nível médio											
TESTE SENSORIAL – ESCALA HEDÔNICA											
Você está recebendo quatro amostras de iogurte grego enriquecido com pó de pitaia vermelha (<i>Hylocereus costaricensis</i>). Por favor, prove-as da esquerda para a direita e atribua uma nota para cada parâmetro de acordo com a escala abaixo relacionada. 9 – gostei extremamente											
8 – gostei muito 7 – gostei moderadamente 6 – gostei ligeiramente 5 – não gostei, nem desgostei 4 – desgostei ligeiramente 3 – desgostei moderadamente 2 – desgostei muito 1 – desgostei extremamente											
AMOSTRAS	AROMA	COR	SABOR	TEXTURA	APARÊNCIA GLOBAL						
Comentários:											

ANEXO VI – MODELO DE FICHA UTILIZADA NO TESTE SENSORIAL DE INTENÇÃO DE COMPRA

FICHA DE ANÁLISE SENSORIAL DE IOGURTE TIPO GREGO ENRIQUECIDO COM PÓ DE PITAIA VERMELHA

TESTE SENSORIAL - INTENÇÃO DE COMPRA

Em relação às amostras já apresentadas e avaliadas anteriormente, por favor, expresse sua "intenção de compra" de acordo com a escala abaixo.

- 5 certamente compraria
- 4 provavelmente compraria
- 3 tenho dúvida
- 2 provavelmente não compraria
- 1 certamente não compraria

AMOSTRAS	INTENÇÃO DE COMPRA			

Comentários:				