DEPARTAMENTO DE ENSINO COORDENAÇÃO DO CURSO TÉCNICO EM MECÂNICA SUBSEQUENTE PROGRAMA DE UNIDADE DIDÁTICA – PUD

DISCIPLINA: COMANDOS ELÉTRICOS		
Código:	SMEC.09	
Carga Horária Total: 40 h	CH Teórica: 12 h CH Prática: 28 h	
Número de Créditos:	2	
Pré-requisitos:	SMEC.04	
Semestre:	2	
Nível:	Médio/Técnico	

EMENTA

Grandezas elétricas e cuidados com a eletricidade. Apresentação dos materiais e equipamentos utilizados em circuitos de acionamento de motores CA e outras cargas. Simbologia empregada em diagramas elétricos convencionais. Princípio de funcionamento dos motores elétricos de corrente alternada trifásicos e monofásicos (Motores CA trifásicos e monofásicos). Tensões de placa e ligações de Motores CA trifásicos e monofásicos. Acionamento de Motores CA trifásicos e monofásicos por circuitos convencionais de comando automático por botoeiras, contatores, relés, disjuntor-motor. Acionamentos de Motores CA trifásicos e monofásicos, através de chaves de partida direta, partida direta com reversão. Acionamentos de Motores CA trifásicos com partida assistida usando chave estrela-triângulo, chave compensadora automática. Acionamento de Motores CA trifásicos e monofásicos em comando sequencial e temporizado. Acionamento do motor de polos comutáveis (ligação Dahlander), com duas velocidades.

OBJETIVOS

- Reconhecer e utilizar equipamentos e procedimentos seguros no trabalho com eletricidade;
- Compreender o princípio de funcionamento do moteres elétricos de corrente alternada;
- Identificar materiais e equipamentos empregados em circuitos para acionamento e proteção de motores;
- Identificar e compreender os dados e tensões nominais de placa de motores;
- Identificar e compreender os tipos de ligações de motores;
- Identificar os terminais de motores CA, trifásicos e monofásicos;
- Identificar e compreender os diagramas e esquemas elétricos de circuitos de comando e força, para acionamento de motores e outras cargas;
- Montar e operar comandos elétricos industriais para acionamento de motores CA;

- Realizar medições em motores CA, utilizando multímetro, alicate-amperímetro e tacômetro;
- Descrever a operação dos circuitos de comando e força para acionamento de motores.

PROGRAMA

UNIDADE I – Fundamentos de Eletrotécnica:

- Panorama energético brasileiro;
- Cuidados com a eletricidade;
- Circuitos trifásicos;
- Funcionamento dos motores elétricos de corrente alternada.

UNIDADE II- Tensões Nominais, Tipos de Ligações e Apresentação dos Dispositivos Utilizados em Circuitos para Acionamento de Motores:

- Tensões nominais de placa e tensões de alimentação da rede;
- Tipos de Ligação de motores CA, trifásicos e monofásicos;
- Apresentação dos materiais e equipamentos empregados em acionamento de motores;
- Dispositivos de comando, controle, sinalização e proteção.
- Simbologia padronizada convencional;
- Terminologia empregada em comandos elétricos;
- Diagramas e esquemas elétricos de comando e força;
- Teste dos materiais e componentes de comando, controle sinalização e proteção.

UNIDADE III - Acionamentos Automáticos de Dispositivos e Motores CA Através de Comandos Eletromagneticos;

- Partida direta para motor trifásico utilizando os diagramas de comando e força;
- Acionamento do motor monofásico com partida à capacitor utilizando os diagramas de comando e força;
- Patida direta com reversão de rotação, para motor trifásico utilizando os diagramas de comando e força;
- Acionamento do motor monofásico com partida à capacitor e reversão de rotação utilizando os diagramas de comando e força;
- Acionamento do motor para sistemas de abastecimento de água com chaves bóias utilizando os diagramas de comando e força;
- Acionamento de comando para ligação sequencial e temporizada de três motores utilizando os diagramas de comando e força;
- Acionamento do motor de polos comutáveis (ligação Dahlander), utilizando os diagramas de comando e força;

- Partida de motor com chave estrela-triângulo automática utilizando os diagramas de comando e força;
- Partida de motor com chave compensadora automática utilizando os diagramas de comando e força.

METODOLOGIA DE ENSINO

Aulas demonstrativas, práticas realizadas pelos alunos e orientadas pelo Professor.

Aulas práticas:

- Conhecer e testar materiais e componentes de comando;
- Planejar e executar sistemas de comandos elétricos;
- Montar sistemas de comando elementar;
- Acionar motores elétricos em partida direta;
- Acionar motores em partida direta com reversão;
- Acionar motores em partida estrela triângulo;
- Acionar motores elétricos com partida compensada.

RECURSOS

Quadro, pincéis, computador, projetor multimídia e Laboratório de Comandos Elétricos Industriais (LCEI)

AVALIAÇÃO

No processo de avaliação da aprendizagem, serão aplicadas provas teóricas, bem como de provas práticas do conteúdo ministrado, com foco em acionamento de máquinas. Espera-se que o aluno utilize, visando a segurança, equipamentos e procedimentos quanto ao funcionamento de motores elétricos e circuitos de acionamento e proteção de motores. Serão avaliados os seguintes critérios: participação na aula, organização, criatividade, proatividade e interesse nos temas propostos nas aulas práticas.

BIBLIOGRAFIA BÁSICA

- 1. FRANCHI, C. M. Acionamentos Elétricos. 5ª ed., São Paulo, SP: Érica, 2014.
- 2. KOSOW, Irving L. Máquinas Elétricas e Transformadores. 15ª ed., São Paulo, SP: Globo, 2005.
- 3. CAVALCANTI, P. J. Mendes. Fundamentos de eletrotécnica. Freitas Bastos Editora, 22ª Edição/ 2012.

BIBLIOGRAFIA COMPLEMENTAR

- 1. MAMEDE F., João. Instalações Elétricas Industriais. 9ª Ed., Rio de Janeiro, RJ: LTC, 2017.
- 2. LELUDAK, Jorge Assade. Acionamentos eletromagnéticos. Curitiba: Base Editorial, 2010.
- 3. FITZGERALD, A. E. **Máquinas Elétricas: Com Introdução À Eletrônica De Potência**. 6ª ed., Porto Alegre, PR: Bookman, 2006.
- 4. MOHAN, Ned. **Máquinas Elétricas e Acionamentos: Curso Introdutório**. 1ª Ed., Rio de Janeiro, RJ: LTC,2015.
- 5. PAPENKORT, Franz. Esquemas elétricos de comando e proteção. 2ª ed., São Paulo, SP: EPU, 2008.

Coordenador do Curso	Setor Pedagógico