INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ (IFCE)

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ (UVA) PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE FÍSICA MESTRADO NACIONAL PROFISSIONAL EM ENSINO DE FÍSICA

JOSÉ ROMILDO DE MOURA

A HISTÓRIA DAS EQUAÇÕES APRESENTADAS EM SEMINÁRIOS COMO FORMA DE ENVOLVER OS ALUNOS NAS AULAS DE FÍSICA

SOBRAL, CE

JOSÉ ROMILDO DE MOURA

A HISTÓRIA DAS EQUAÇÕES APRESENTADAS EM SEMINÁRIOS COMO FORMA DE ENVOLVER OS ALUNOS NAS AULAS DE FÍSICA

Dissertação de Mestrado submetida ao Programa de Pós-Graduação do Instituto Federal do Ceará e da Universidade Estadual Vale do Acaraú no Curso de Mestrado Profissional de Ensino de Física (MNPEF), como parte dos requisitos necessários à obtenção do título de Mestre em Ensino de Física.

Orientador: Wilton Bezerra de Fraga

SOBRAL, CE 2018

JOSÉ ROMILDO DE MOURA

A HISTÓRIA DAS EQUAÇÕES APRESENTADAS EM SEMINÁRIOS COMO FORMA DE ENVOLVER OS ALUNOS NAS AULAS DE FÍSICA

Dissertação submetida ao Polo 56 UVA/IFCE do Mestrado Nacional Profissional em Ensino de Física - MNPEF do Instituto Federal de Educação Ciencia e Tecnologia do Ceará, como requisito parcial para a obtenção do grau de Mestre em Ensino de Física.

Aprovada em 15 de Março de 2018.

BANCA EXAMINADORA

WILTON BEZERRA DE FRAGA
Instituto Federal de Educação Ciencia e Tecnologia do Ceará - IFCE (ORIENTADOR)

MELSON STUDART FILHO (MEMBRO EXTERNO)

Universidade Federal do ABC - UFABC

GEORGE FREDERICK TAVARES DA SILVA

Instituto Federal de Educação Ciencia e Tecnologia do Ceará - IFCE

AMAŘÍLIO GONÇALVÉS COELHO JUNIOR

Instituto Federal de Educação Ciencia e Tecnologia do Ceará - IFCE

SOBRAL, CE

Dados Internacionais de Catalogação na Publicação Instituto Federal do Ceará - IFCE Sistema de Bibliotecas - SIBI Ficha catalográfica elaborada pelo SIBI/IFCE, com os dados fornecidos pelo(a) autor(a)

M929a Moura, José Romildo de.

A História das Equações Apresentadas em Seminários como forma de envolver os alunos nas aulas de Física / José Romildo de Moura. - 2018.

104 f.: il. Color.

Dissertação (Mestrado) - Instituto Federal do Ceará, Mestrado Nacional Profissional em Ensino de Física, Campus Sobral, 2018.

Orientação: Prof. Dr. Wilton Bezerra de Fraga.

1. História da Física, Ensino Aprendizagem, Sociointeração. I. Titulo.

CDD 530.07

AGRADECIMENTOS

Agradeço a todos que a todos que colaboraram de forma direta para que esse projeto fosse realizado com êxito. Em primeiro lugar, agradeço a Deus por ter criado o universo, usando a Física como ferramenta e por ter me dado a sabedoria de reconhecer as necessidades que carecem os alunos em aprendê-la.

Não menos importante, mas em segundo lugar aos meus pais, José Gerardo de Moura e Antônia Lúcia Sousa de Moura, que mesmo sem possuírem condições necessárias, não deixaram as circunstâncias atrapalhar o caminho, no qual segui, reconhecendo que o único rumo para se aproximar da plenitude é através da educação. Essas atitudes jamais serão esquecidas por mim.

Também gostaria de agradecer à minha esposa Maria do Livramento de Sousa Moura (Menta), pela compreensão durante estes dois anos de luta, incentivando-me com suas palavras doces nos momentos difíceis. À minha Filha Romênia de Fátima, por compreender que o "papai" não podia passear aos domingos. E de forma especial, ao professor Valmir Filho, principal responsável pela minha presença no curso de mestrado, a você meus sinceros e infinitos agradecimentos.

Por fim, agradeço também a meu orientador e professor Dr. Wilton Bezerra, que acreditou em nosso método de trabalho para o ensino de Física e a todos os meus colegas de turma, pelos momentos de descontração, desde hora do café até os cochilos durante as aulas da tarde e pela ajuda no momento de "abrir as contas", quando não era possível entender. A colaboração de todos vocês me ajudou no processo de formação.

Conte-me e eu esqueço. Mostre-me e eu apenas me lembro. Envolva-me e eu compreendo. (Confúcio)

RESUMO

É perceptível que as dificuldades apresentadas diariamente pelos alunos do Ensino Médio no processo de ensino-aprendizagem na disciplina de Física, são casos a serem discutidos entre professores com o objetivo de buscar alternativas para sanar esse contratempo. Talvez as metodologias utilizadas por alguns professores como, por exemplo, a resolução de problemas, utilizando fórmulas matemáticas esteja um pouco ultrapassada, dificultando a percepção por parte do aluno de que os conteúdos repassados estão presentes em seu cotidiano. Ao longo dos anos, estamos vivenciando uma crescente onda de professores que procuram sair da mesmice e começam a trabalhar métodos diferenciados, que vão aos poucos extinguindo o tradicionalismo no ensino. O uso da história da Física entrelaçada a outras metodologias é uma das maneiras de ensino que vem ganhando espaço dentro da sala de aula, auxiliando o professor a pôr em prática métodos educativos que podem melhorar o aprendizado nessa disciplina, e, que gradualmente, vem conquistando a simpatia de alguns estudantes. Para associar essa ideia, fizemos uma análise dos livros didáticos de Física, disponíveis para o ano de 2018, com objetivo de averiguar a importância dada pelos autores sobre a contextualização histórica, e infelizmente, constatamos que os aspectos históricos disponíveis em relação a essa ciência se resumem a pequenos Box com abreviações biográficas de alguns cientistas e fatos superficiais sobre alguns tópicos. Motivado por isso, é que este trabalho apresenta uma proposta de trabalhar a contextualização histórica da Física com foco em suas equações. Disponibilizamos um material didático que irá nortear o professor a utilizar temas de Física aliada ao uso de seminários com base na teoria Sociointeracionista de Vygostky, este recurso que utilizamos tem o foco de melhorar a aprendizagem dos alunos, fazendo com que eles sejam os personagens principais de sua própria aprendizagem. O material proposto teve aplicação em três turmas 1°, 2° e 3° anos do ensino médio, e os resultados colhidos nos permite concluir que houve um ótimo rendimento por parte dos alunos e que sugestões dessa natureza podem ser aplicadas em diversos assuntos de forma a garantir uma melhoria na qualidade do ensino e no aprendizado em Física.

Palavras chave: Ensino de Física, História da Física, Teoria Sociointeracionista, Ensino-aprendizagem.

ABSTRACT

It is noticeable that the difficulties presented daily by middle school students in the teachinglearning process in the discipline of Physics, are cases to be discussed among teachers with the aim of seeking alternatives to remedy this setback. Perhaps the methodologies used by some teachers as, for example, the resolution of problems using mathematical formulas is a little outdated, hindering the perception on the part of the student that the content passed are present in your daily life. Over the years, we are experiencing a growing wave of teachers who seek to leave the monotony and begin to work different methods that will gradually extinguishing the traditionalism in teaching. The use of the history of physics interwoven with other methodologies is one of the ways of teaching that has been gaining space inside the classroom, helping the teacher to practice educational methods that can improve learning in this discipline and that gradually comes gaining the sympathy of some students. To associate this idea, we did a review in the textbooks of Physics available for the year of 2018 with the objective to investigate the importance given by the authors about the historical contextualization and unfortunately, we see that the historical aspects available in relation to this science can be summed up in small box with biographical abbreviations of some scientists and quick facts about some topics. Motivated by these facts is that this work presents a proposal to work the historical contextualization of physics with a focus on their equations, in which we have a didactic material that will guide the teacher to use themes of physics combined with the use of seminars based on the theory of socio-interactionist Vygostky, this feature that we use has a focus to improve student learning by doing that they are the main characters of your own teaching-learning process. The proposed material was applied in three classes 1st, 2nd and 3rd years of secondary education and the results collected allows us to conclude that there was a great performance on the part of students and that suggestions of this nature can be applied in various matters in order to ensure an improvement in the quality of teaching and learning in physics.

Keywords: Physics Teaching, History of Physics, Sociointeractionist, Teaching-learning.

LISTA DE ILUSTRAÇÕES

Figura 1. Esquema: Professor mediador, aluno e ambiente de aprendizagem	26
Figura 2. Etapas do desenvolvimento da aprendizagem segundo Vygotsky	45
Figura 3. Esquema do desenvolvimento cognitivo de uma pessoa	46
Figura 4. Livro Conexões com a Física	52
Figura 5. Livro: Física Ciência e Tecnologia	53
Figura 6. Livro: Física	54
Figura 7. Livro: Física aula por aula	55
Figura 8. Livro: Física em contextos	56
Figura 9. Livro: Física Interação e Tecnologia	57
Figura 10. Livro: Física, Ser Protagonista	58
Figura 11. Livro: Física	59
Figura 12. Livro: Compreendendo a Física	60
Figura 13. Livro: Física	61
Figura 14. Livro: Física para o ensino médio	63
Figura 15. Livro: Física: Contextos e Aplicações	64
Figura 16. Grupo de alunos do 1°A debatendo o teste diagnóstico	69
Figura 17. Grupo de alunos do 2°A debatendo o teste diagnóstico	71
Figura 18. Grupo de alunos do 3°A debatendo o pré-teste	73
Figura 19. Apresentação de Seminários 1°A	83
Figura 20. Apresentação de Seminários 2°A	84
Figura 21. Apresentação de Seminários 3°A	84
Figura 22. Professor e coordenador do MNPEF acompanhando a aplicação do produto	86

LISTA DE TABELA

Tabela 1. Obras disponíveis pelo PNLD para escolha dos professores	51
Tabela 2 - Referente aos alunos do 1° A, turno manhã, total de 39 alunos	69
Tabela 3 – Referente aos alunos do 2ª A, turno manhã, total de 38 alunos	71
Tabela 4. Referente aos alunos do 3° A, turno manhã com o total de 27 alunos.	. 73
Tabela 5. Teste de sondagem dos professores	. 75
Tabela 6. Teste de sondagem de alunos (Parte I)	. 78
Tabela 7. Teste de sondagem de alunos (Parte II)	. 80

LISTA DE GRÁFICOS

Gráfico 1. Comparativo dos testes do 1° A	. 93
Gráfico 2. Comparativo dos testes do 2° A	. 94
Gráfico 3. Comparativo dos testes do 3°A	. 96

Sumário

RESUMO	7
ABSTRACT	8
INTRODUÇÃO	14
1. A PROPOSTA	17
1.1. O uso do seminário como ferramenta pedagógica de aprendizagem	20
1.2. O papel do professor como intermediador no processo ensino-aprendizagem	27
1.3. A História da Física e de suas equações e a importância para ensino	34
2. O REFERENCIAL TEÓRICO	43
2.1. O Sociointeracionismo de Vygotsky	44
2.2. A Teoria Sociointeracionista aplicada ao seminário em sala de aula	46
2.3. A história das equações nos livros didáticos	49
2.2.1. Editora Moderna.	51
2.2.2. Editora FTD	54
2.2.3. Editora do Brasil	56
2.2.4. Editora LEYA	57
2.2.5. Editora SM	58
2.2.6. Editora Ática	59
2.2.7. Editora Saraiva	61
2.2.8. Editora Scipione	63
3. METODOLOGIA E APLICAÇÃO DO PRODUTO	66
3.1. A escolha dos temas dos seminários	66
3.2. A construção do material didático	66
3.3. Coleta de dados	67
3.4. Sondagem: O que dizem os professores e alunos sobre a História da Física	75
3.5. Apresentação dos seminários	82

4. RESULTADOS E DISCUSSOES	88
4.1. Discussões	92
4.2. Análise sobre o desempenho do 1° ano A	93
4.3. Análise sobre o desempenho do 2° ano A	94
4.4. Análise sobre o desempenho do 3° ano A	95
5. CONSIDERAÇÕES FINAIS	99
REFERÊNCIAS	102

INTRODUÇÃO

Há vários anos, trabalhando como professor de Física do ensino médio de escola pública estadual, tive a conclusão que a maioria dos educandos com faixa etária entre 14 e 15 anos do ensino médio que estudam nestas instituições, tem curiosidade em saber mais sobre a história da Física. Pude notar este fato durante as minhas aulas de Física, por exemplo, quando exponho o conteúdo a ser estudado, sempre coloco uma breve exposição histórica que levou a culminância do evento em questão. Neste momento, passei a perceber que a sala quase por inteira parava para ouvir o que era relatado, observando atentamente as imagens que eram colocadas em projeção. Neste momento, a interação com os alunos foi tamanha que não se viu passar o tempo. Concluí que o fluxo da aula foi satisfatório e os educandos puderam conhecer uma parte dos longos capítulos que a história da Física possui. Com essa observação, entendo que é possível ministrar as aulas de Física com os conteúdos propostos na matriz curricular em consonância com a sua história, porém, infelizmente poucos são os professores que procuram abranger em suas aulas essa contextualização com os alunos do ensino médio. A falta de material de livre acesso junto com a escassez de conteúdos dessa natureza disponíveis nos livros didáticos, talvez sejam um dos fatores que colaboram para a não abordagem desse tipo de conteúdo.

Aliado a esses fatores, temos contado também com o despreparo de muitos professores que fazem de suas aulas verdadeiros palcos matemáticos, tornando o ensino vago, superficial e sem significado para o aluno. A exposição no quadro do emaranhado de equações sem seu devido significado e finalidade de aplicação, muitas vezes torna-se enfadonha e acaba confundindo ainda mais o aluno, além de não deixar um significado real de sua importância. Uma pesquisa recente, publicada na *Folha de São Paulo* no dia 23 de janeiro de 2017, revelou que quase 50% dos professores não têm formação na disciplina na qual lecionam. Esse agravo estende-se para a disciplina de Física, em que somente 27% dos professores brasileiros têm formação, talvez o velho problema das aulas enfadonhas com lousas cheias de cálculos se explique quando os números mostram que 29,8% de professores licenciados em matemática dão aulas de Física, superando o próprio número de licenciados que dão aulas dessa disciplina.

Diante do agravo, nossa proposta é tentar ajudar os professores de Física do Brasil a dinamizar suas aulas e fazer com que esse quadro possa se reverter, fazendo com que elas possam ser atrativas e simplificadas, em vez de ficarmos por longo tempo expondo no quadro

equações e resolvendo exercícios, que para muitos alunos não expressam sentido algum, podemos mostrar a contextualização histórica com a origem dessas formulações matemáticas e suas aplicações no cotidiano. O envolvimento dos alunos é imprescindível, pois utilizaremos como método pedagógico o seminário, tentando garantir um relacionamento entre os alunos através da interação, da troca de conhecimentos e socialização de ideias. O estudo da gênese dos assuntos abordados nas aulas de Física ganha bastante significado, deixando os conteúdos trabalhados pelo professor em sala de aula com sentidos mais significativos. Entendemos que essa seja uma possibilidade de envolvimento real dos estudantes com a disciplina, já que o tempo disponível semanalmente é insuficiente para aprender essa ciência cheia de encantos.

Trabalhar com a história das Equações¹ da Física é algo novo, é desafiador. Novo pela conjuntura dos livros didáticos estarem abordando de maneira superficial fatos tão importantes na história da ciência e percebe-se que paulatinamente estão substituindo o pouco do superficial que ainda é estampado por exercícios matemáticos e equações que não se sabem a origem. Também não encontramos registros de trabalhos ou artigos acadêmicos que abordam esse tipo de estudo, o que deixa a missão ainda mais desafiadora devido à escassez de referências para o nosso trabalho. Vamos mostrar aos poucos o pensamento que levou os cientistas ao processo de formulação de algumas equações da Física. Por ventura, faremos os estudos de outras equações com o objetivo de expandir nosso trabalho a não ficar somente entre as quatro paredes da sala de aula, mas que através desse trabalho possamos formar um grupo de pesquisa e palestra para divulgação nas escolas.

Disponibilizamos um produto educacional que vai auxiliar os professores de Física ou de áreas afins a estimular os alunos a se envolverem nas aulas com o estudo da história da Física, visto que essa é a parte onde a maioria dos educandos mostram interesse em conhecer um pouco sobre o trajeto percorrido pelos protagonistas da história dessa ciência. Pretendemos mostrar um pouco dos acontecimentos históricos os quais são omitidos na maioria dos livros didáticos disponibilizados de forma gratuita pelo Ministério da Educação (MEC) como a concretização das ideias e que revolução social foi alcançada com a formulação dessas equações. Destacamos mais uma vez a importância de nossos alunos para a aplicação do produto educacional, pois por intermédio do professor eles serão autores do próprio conhecimento.

Para o desenvolvimento do nosso produto educacional, buscamos alicerçar nossa ideia em um referencial teórico que se sustentasse em sala de aula, ou seja, que facilitasse o processo de ensino-aprendizagem, dessa forma nos apropriamos das ideias

sociointeracionistas presentes na teoria de Vygotsky. O produto educacional teve aplicação em duas turmas do ensino médio na escola Vilebaldo Aguiar na cidade de Coreaú, interior do Ceará. Nosso trabalho é composto de quatro capítulos, sendo o primeiro dedicado a justificativa do trabalho e os objetivos de se trabalhar com seminários como elemento facilitador para aprendizagem da Física através de sua história. No segundo capítulo, teremos um estudo sobre a teoria Sociointeracionista de Lev Vygotsky e o elo com nossa proposta de trabalho. No terceiro capítulo, descrevemos o nosso produto e sua aplicação em sala de aula. Finalizamos nossas atividades com o quarto capítulo, e nele, expomos nossas conclusões acerca das aplicações do produto junto com os resultados obtidos, também estabelecemos uma proposta para criação de grupo de palestra para nossa escola que pode ser estendida para outras instituições, outrossim, temos as referências bibliográficas e os apêndices que compõem esta dissertação.

1. A PROPOSTA

Ao longo dos anos, estamos acompanhando a crescente perda de identidade dos livros didáticos disponíveis para o ensino de Física. Desde 2009, o Governo Federal através do Programa Nacional do Livro Didático para o Ensino Médio (PNLEM), deu a nós, professores da rede pública, a oportunidade de escolher os livros didáticos que serão trabalhados no ensino médio por um período de três anos consecutivos. A escolha é feita por um processo democrático com base em um guia contendo as informações das obras, dentre os livros que já foram colocadas à disposição durante esse tempo. O que percebemos foi que a maioria nada expõe sobre a contextualização histórica da Física ou quando citam a história, dedicam nada mais do que alguns parágrafos introdutórios de iniciação de capítulo, preferindo expor de forma repetitiva, exercícios vazios que pouco contribui para o desenvolvimento do aluno.

Alguns autores citam em seus trabalhos essa dificuldade de encontrar fundamentações nos livros didáticos, como escreve Moreira, (2000, p.95) que diz:

(...) me referindo apenas à realidade brasileira, muito do ensino de Física em nossas escolas secundárias está, atualmente, outra vez referenciado por livros, porém de má qualidade – com muitas cores, figuras e fórmulas - e distorcido pelos programas de vestibular; ensina-se o que cai no vestibular e adota-se o livro com menos texto para ler

Dessa forma, percebemos que o conteúdo abordado, na maioria dos livros didáticos, tem um enfoque matemático, perdendo a base essencial do ensino que é a construção do conhecimento.

Vários autores afirmam que a contextualização da história da ciência contribui para o desenvolvimento do aluno como descreve Matthews (1995, p.172) isso porque:

(1) motiva e atrai os alunos; (2) humaniza a matéria; (3) promove uma compreensão melhor dos conceitos científicos por traçar seu desenvolvimento e aperfeiçoamento; (4) há um valor intrínseco em se compreender certos episódios fundamentais na história da ciência a Revolução Científica, o darwinismo, etc.; (5) demonstra que a ciência é mutável e instável e que, por isso, o pensamento científico atual está sujeito a transformações que (6) se opõem a ideologia científicista; e finalmente, (7) a história permite uma compreensão mais profícua do método científico e apresenta os padrões de mudança na metodologia vigente.

A citação descrita acima se comprova a partir do momento em que se faz uma mesclagem durante as aulas, quando o professor intercala a contextualização histórica com o

conteúdo programático. Essa experiência vem melhorando significativamente o desempenho dos alunos nas turmas que leciono, pois os mesmos demonstram um interesse maior pela disciplina e com isso, acabam promovendo uma compreensão significativa das abordagens em termos físicos e científicos que são repassados pelo professor. A clareza dos assuntos que serão estudados pode melhorar a partir do momento em que os alunos passam a trocar ideias com a formação de grupos de estudos com o objetivo de construírem com aquiescência e autonomia o próprio aprendizado científico, comungando com críticas e sugestões.

A ideia para a formação e desenvolvimento intelectual do aluno vem de acordo com as finalidades do ensino médio proposto pela Lei de Diretrizes e Bases (LDB) 9.394/96 em seu artigo 35, parágrafo terceiro que diz "III – o aprimoramento do educando como pessoa humana, incluindo a formação ética e o desenvolvimento da autonomia intelectual e do pensamento crítico."

Por outro lado, alguns autores destacam os cuidados que se deve ter ao se estudar a história da ciência, devido à interferência desfavorável que ela pode repassar para aqueles que tenham uma determinada opinião formada sobre alguns assuntos, e que a mesma seja utilizada por um público maduro, com consciência de analisar e absorver a história real da ciência como aponta Brush *apud* Matthews (op cit, p. 177), que afirma:

(...) a história da ciência poderia ser uma influência negativa sobre os estudantes porque ela ceifa as certezas do dogma científico; certezas essas que são tão úteis para se manter o entusiasmo do principiante. Apesar do tom jocoso, na verdade, ele sugere seriamente que apenas um público científico maduro deveria ter acesso à história.

Apesar do pensamento descrito por Brush ser um pouco confuso quanto a usar ou não a história da ciência e para qual público ensinar, ele foi um dos autores que mais a utilizou no ensino. Para ele o que deve prevalecer é o significado social e não o dogmático da ciência, como fez em uma abordagem ao destacar que:

Eu sugiro que o professor que deseja doutrinar seus estudantes no papel tradicional do cientista como um investigador neutro, não deveria usar os materiais históricos da espécie que está sendo preparada agora pelos historiadores da ciência: eles não servirão a seus propósitos (...) Por outro lado, aqueles professores que desejam neutralizar o dogmatismo dos textos didáticos e transmitir algum entendimento da ciência como uma atividade que não pode estar divorciada de considerações metafísicas ou estéticas, podem encontrar algum estímulo na nova história da ciência. (BRUSH, 1974, *apud* PORTELA E LARANJEIRA, *apud* p. 5)

Dessa forma, entendemos que o estudo dos processos históricos da ciência pode e deve ser ensinado durante as aulas de Física, podendo ela despertar no estudante o interesse maior pela disciplina. Então, nossa proposta que se baseia nas teorias de Vygotsky, vem reforçar que é essencial os alunos conhecerem a história da Física para a compreensão dos conceitos atuais. Visto que, para se chegar aos modelos conceituais que são propostos pelos livros didáticos, houve um processo histórico e cultural para o desenvolvimento das ideias, teorias e equações que conhecemos atualmente e que tiveram a colaboração de pessoas muito famosas, outras nem tanto e até grupos de estudiosos que contribuíram para se chegar ao resultado final. Lembremo-nos do inglês Oliver Heaviside e sua contribuição para o desenvolvimento das equações de Maxwell ou ainda, o grupo de estudiosos do colégio de Mérton na construção do teorema da velocidade em que neste, as ideias interacionistas e o trabalho em grupo já se encontravam presentes no processo de construção deste teorema.

Assim também, esperamos fazer conjuntamente através da troca de conhecimento, a construção das ideias que estão presentes na Física com a história do desenvolvimento das equações, abrangendo temas como Velocidade e Cinemática, Gravitação, Termodinâmica, Equações de Maxwell e a Relatividade. Acreditamos que o conhecimento, quando parte da gênese, fica melhor para se entender o processo final, principalmente quando esse conhecimento estiver aliado à construção coletiva com a troca de ideias no processo ensino-aprendizagem. Dessa forma, acreditamos estar colaborando com a difusão do ensino de Física nas escolas públicas e contribuindo para que esse ensino possa ganhar melhorias e reconhecimento diante do cenário onde vemos a crescente diminuição do tempo de aula dessa disciplina, aliado com a defasagem curricular proposto pelo sistema, em que as aulas não levam o educando a pensar coletivamente na construção do conhecimento.

Não queremos transformar as aulas de Física em aulas de História, pois já existe a disciplina de História no currículo do ensino médio, nosso objetivo é auxiliar os alunos com pesquisa sobre os processos de evolução dos conceitos físicos. Porém, tantos foram os fatos da história mundial que causaram verdadeiras revoluções sociais com auxílio da ciência, por vezes omitidas pelos livros didáticos que precisam ser difundidas. Podemos citar rapidamente a Revolução Industrial, que para acontecer, precisou do uso da termodinâmica. O uso do quadro negro pelo professor é de fato necessária, mas apenas isso acaba deixando as aulas monótonas e acabamos perdendo a atenção do aluno, visto que o tempo de capacidade dele de reter informações se esgota em apenas 10 ou 20 minutos como revelou a educadora americana

Tracey Tokuhama-Espinosa da Universidade San Francisco, de Quito no Equador em entrevista ao *Jornal Zero Hora*, em 2011. Como destaca os PCN+

Se o professor insistir em cumprir programas extensos, com conteúdos sem significados e fragmentados, transmitindo-os de uma única maneira a alunos que apenas ouvem e repetem, sem dúvida as competências estarão fora de alcance. (BRASIL, PCN, 2002, p. 113)

Portanto, queremos mostrar que é possível entender Física através de sua história, ainda mais quando se usa um fato inédito que é a contextualização histórica do desenvolvimento das equações. Utilizamos os seminários como ferramenta pedagógica para intermediar a aprendizagem, pois na fase de planejamento, os alunos se reúnem em grupos para debater, pesquisar, sugerir e organizar os conteúdos que serão executados na apresentação em sala de aula. Por ser raro os assuntos que iremos abordar, usamos como principal ferramenta de pesquisa para a elaboração dos seminários, os livros de Ian Stewart, 17 equações que mudaram o mundo, Robert P. Crease, As grandes equações: a história das fórmulas matemáticas mais importantes e os cientistas que a criaram, José Plínio Baptista, Da Physis à Física: uma história da evolução do pensamento da Física e Jun'ichi Osada, Evolução das ideias da Física. Como ponto de sustentação de nossa ideia, usamos como foco principal a Teoria Sociointeracionista de Vygotsky. A aprendizagem da Física se torna mais eficaz por meio do convívio social, ou seja, a interação, que possibilita a troca de informações. Desse modo, temos a convicção de que se as orientações e as pesquisas indicadas no produto educacional forem seguidas ou ainda aperfeiçoadas, podemos ter a esperança de bons resultados.

1.1. O uso do seminário como ferramenta pedagógica de aprendizagem

Professores de todo o Brasil elaboram ou usam estratégias que possam surtir efeitos de maneira rápida e eficaz com o intuito de obter resultados satisfatórios. Assim, o uso de mecanismos que melhore a participação e o engajamento do aluno nas aulas é essencial para o desenvolvimento de uma boa aula. Docentes buscam crescentemente métodos que possam melhorar o desempenho dos educandos nessa disciplina. Com isso, a necessidade dos professores de se trabalhar com atividades diferenciadas que dê suporte como garantia da aprendizagem do discente a fim de explorar a formação particular de seus múltiplos saberes

que são introduzidos em um contexto sociocultural e sócio-histórico bem como através de suas vivências dos processos de ensino e de aprendizagem.

Diante do conhecimento que temos sobre nossos alunos, é necessário a reavaliação de nossas práticas metodológicas, enquanto docentes, com o objetivo de reverter o quadro de fracasso que se encontra nossa educação e proporcionar aos educandos um ambiente favorável para a construção da aprendizagem. Esse ambiente de aprendizagem concentra diversas atividades que facilitam a assimilação do conteúdo estudado no qual podemos citar os jogos, simulações computacionais, experimentos, desenvolvimento de projetos de pesquisa, seminários, debates e etc., essas propostas fomentam a parceria entre professor e aluno, propiciando um clima agradável para que o educando construa as bases necessárias que são favoráveis para a aquisição de conhecimento.

O método pedagógico que utilizamos como estratégia de melhoria na aprendizagem para o ensino de Física foi o seminário, por entender que este tende a ajudar os alunos no seu desenvolvimento pessoal, didático, social e técnico-científico e concomitantemente, colabora para o processo de ensino-aprendizagem a partir do momento em que o estudante é submetido às etapas de planejamento, execução e avaliação. Sendo de grande importância todas essas etapas, destacamos o planejamento como a base de todo o processo. É nessa etapa em que os estudantes irão interagir uns com os outros com o objetivo de trocar conhecimentos, sugerir, criticar e criar as estratégias com a finalidade de socialização do que se aprendeu acerca do conteúdo proposto em sala de aula. Para a estudiosa Althaus (2011), a origem do seminário data do século XVII no interior das universidades alemãs, mas só se estabeleceu integralmente no século XIX, como descrito abaixo.

O seminário surgiu no fim do século XVII, na Alemanha, no interior das universidades e, com características bem definidas, correspondia a momentos de socialização de textos nos quais, em torno de uma mesa e coordenados por um professor, comentavam os textos e apresentavam opiniões, surgindo alguns debates a partir de interpretações divergentes. Ainda de acordo com a mesma autora, só no século XIX o seminário consolidou-se plenamente. (ALTHAUS 2011, *apud* MEIRA E SILVA 2013, p. 5)

A palavra seminário vem do latim "seminarium", que significa viveiro de plantas, ou seja, espaço para semear e cultivar. Essa definição nos revela qual é o seu real objetivo e a cautela que devemos ter quando se tem a intenção de organizar uma atividade desse porte, envolvendo os alunos. Embora ao longo dos anos essa ideia tenha sofrido distorções, talvez pela falta de conhecimento de alguns professores que se utilizam do método e o transforma

em um ensino mecânico com abordagens superficiais do conteúdo e carecendo da interatividade, como destaca (VEIGA, 1991 *apud* MEIRA e SILVA 2013, p. 06-07) que diz:

A metodologia de trabalho com o seminário seguiu a mesma lógica e objetivo do ensino mecânico até então em evidência, caracterizando-se pela abordagem superficial do conteúdo, a falta de interatividade dos envolvidos e a substituição do monólogo do professor pelo monólogo do aluno.

Concordamos plenamente com o que foi exposto acima pelos autores, pois ao propor a ideia do uso de seminários, fizemos no início do primeiro semestre de 2017, algumas observações nas aulas de Biologia, Geografia e História da Escola Vilebaldo Aguiar, localizada em Coreaú no interior do Ceará, em que os professores costumam utilizar dessa técnica em suas aulas, acabamos constatando o que foi descrito na citação acima. Após assistir as apresentações dos seminários, foi feito a seguinte pergunta aos docentes: Qual o critério utilizado para a organização dos seminários? Podemos verificar as resposta abaixo:

Professor 01: "De acordo com o conteúdo que estou lecionando, busco os que se relacionam com o assunto e que estejam atualizados. Divido-os em equipe e sorteio os assuntos. Depois jogo os critérios de notas para eles saberem que se forem ler slides, vão ficar com nota menor que seis. E digo o que tem que enfatizar em cada assunto, ou eles avacalham."

Professor 02: "No meu caso, proponho temas de fácil compreensão, em que eles sempre têm que me comunicar, nada de cada um com sua parte, eles pesquisam e apresentam. No final sempre aponto o que faltou na apresentação."

Professor 03: "Quanto ao tema, eu divido geralmente o capítulo em partes, cada equipe pesquisa em outros livros e/ou na Internet e apresenta. Uma vez, fiz seminário numa turma de 3º ano, mas não achei muito proveitoso."

O que verificamos nos três casos em que os professores usaram a técnica do seminário é que toda a responsabilidade foi dada aos alunos em preparar, pesquisar fontes, organizar os *slides* para pôr em prática o que foi estudado através da execução. Analisamos também que no caso do professor 02, no qual este aponta os pontos falhos ao final de cada apresentação, sugerimos que essas observações sejam feitas logo no início do planejamento das atividades com as devidas orientações. Em nenhum dos casos percebemos que o professor acompanhou os processos de planejamento, execução e avaliação. Talvez essa falta de acompanhamento tenha gerado o desproveito como apontou o professor 03. Diante do exposto, nossa estratégia visa também acompanhar o prosseguimento das ações desenvolvidas pelos alunos, de modo a trabalhar as melhorias que são necessárias para o desenvolvimento do

uso do seminário desde o momento em que são estabelecidos os critérios de trabalho até a fase pós-exposição. Nosso objetivo, como já mencionamos, é usar o seminário como método facilitador de aprendizagem da Física, entendendo que este tende a propiciar no espaço escolar inúmeras possibilidades e oportunidades para uma resposta rápida no que abrange o desenvolvimento de competências, como também outorga o aumento significativo da aprendizagem dos alunos. Essa dedução vai ao encontro com o que relata Chaves (2008, p. 71).

Ensinar o gênero seminário, portanto, provavelmente, não só traria um retorno imediato no que diz respeito ao desenvolvimento de competências e habilidades de uso da linguagem oral e da escrita, mas também permitiria a ampliação significativa da aprendizagem dos alunos nos diversos campos do saber, bem como a sua valorização social na medida em que o aluno passa a usar a linguagem, em situações públicas as mais diversas, com mais competência e segurança.

Assim, daremos todas as condições para que os educandos consigam alcançar os objetivos que nossa ideia propõe, estabelecendo a inclusão de todos os alunos e colocando-os como o foco principal das atenções, conforme expõe Bezerra (2003) *apud* Meira e Silva (op cit, p. 05) quanto à perspectiva de trabalhos usando seminários.

Nessa perspectiva alguns trabalhos vêm apontando estudos diferenciados sobre o seminário, que não necessariamente são excludentes ou sobrepostos, mas complementares, e similares no sentido de ser o seminário um momento em que os alunos tomam uma postura a que não estão acostumados e assumem uma posição de destaque numa situação de exposição oral, diferenciando-se de outras acepções atribuídas ao termo seminário.

A citação acima reforça os argumentos para se trabalhar o que estamos propondo. A partir do momento em que o professor passa a ser o intermediador, dando as orientações necessárias para que os grupos possam alcançar êxito desde a fase inicial até a sua execução, ele estará dando condições necessárias para que cada membro da equipe localize os aspectos de aprendizagem que ainda não aconteceram, propiciando uma reforma peculiar dos processos de aprendizagem. Dessa forma, estamos dando condições de liberdade para que o aluno seja o agente do seu próprio conhecimento, refletindo sobre o seu processo de desenvolvimento, como destaca Rodrigues (2015, p. 10).

(...) os seminários garantem uma compreensão epistemológica dos conceitos e como um lugar apropriado para a criação de conhecimentos e práticas de intervenção especializada, dado o seu dinamismo, a criatividade e o poder emancipatório do aluno sobre seu processo de aprendizagem e comungando cultura, planejamento, tomada de decisão, pensamento crítico e integração social, sem descartar o grupo multicultural.

Nesse sentido, concordamos que o seminário, quando bem estruturado, bem sequenciado e acompanhado de perto pelo professor que será o intermediador das ações, poderá ser, em sala aula, um método que irá garantir a grande parte do aprendizado que os alunos necessitam. Apesar de não ser uma técnica muito nova, o seminário ainda é considerado diferente, ele propicia um ensino coletivo, tendo como foco a interação, o diálogo e a parceria entre os alunos na troca de conhecimentos, que visa obter através de debates de ideias o desenvolvimento cognitivo. Neste momento, vemos surgir o brilhantismo de alguns alunos, por exemplo, quando expõem suas opiniões, na tomada de decisão e no ato de liderança. Pois com a junção de sugestões diversificadas por parte dos integrantes, este consegue unificar todas as propostas em uma só, respeitando as limitações de cada componente do grupo. Os seminários possibilitam os educandos a gerarem uma aprendizagem coletiva através da troca de conhecimento, como descreve Rodrigues (op cit, p. 766-767) sobre a realização de atividades que envolvem o uso dos seminários no ensino-aprendizagem.

A logística de trabalho possibilitou a integração coletiva, a diversidade de opiniões, a tomada de decisão, o pluralismo de conhecimento e o respeito aos limites de cada aluno, dando sentido do fazer o seminário uma oportunidade de aprendizado coletivo e troca de experiências. O desenvolvimento de consciência pessoal definidos pela autonomia e a função de ajuda, foram características essenciais narradas neste momento.

O desenvolvimento da consciência e da autonomia descritas pelo autor, são funções que por hora encontramos em larga escala nos alunos do ensino médio (nosso foco de trabalho), devido ao grau de maturação cognitiva e vivência social que eles já alcançaram para compreender a Física e demais disciplinas como a Biologia e a Química com auto potencial de transformação da social, como é descrito pela Base Nacional Curricular Comum (BNCC) que diz:

Os/as estudantes do Ensino Médio têm maior maturidade cognitiva e vivencia social, estando, assim, mais bem preparados para a nova ambição formativa nas Ciências. Assim, têm a oportunidade de se aprofundarem nos modos de pensar e falar próprios da cultura, situando-a entre outras formas de organização do conhecimento, e de compreenderem os processos históricos e sociais de construção do conhecimento científico, para atuarem criticamente na sociedade. Essa formação já pode ser especificada em termos da Física, da Química e da Biologia, garantindo, assim, questionamentos e tratamentos mais aprofundados com temáticas e metodologias próprias (...) (BRASIL 2015, BNCC, p. 200).

Após várias experiências na busca de técnicas que pudessem dar um auxílio nas aulas de Física, percebemos que o exposto fortalece nossas convições de que se trabalhar com os alunos do ensino médio, usando de forma correta o seminário como metodologia de ensino, melhorou significativamente o desempenho dos alunos das turmas onde tivemos a experiência de aplicá-lo. Podemos destacar que o seminário propicia momentos de desenvolvimento de competências e habilidades do estudante. As Orientações Curriculares para o Ensino Médio (OCNEM 2006), que tem como objetivo contribuir com as práticas docentes para que a escola tenha condições de promover a inclusão e democratização das oportunidades. Nesse sentido, é oferecido ao aluno uma educação básica de qualidade, estabelecendo estratégias para abordagens de temas e nelas está incluído o uso do seminário, como veremos a seguir.

O item "Estratégias para a abordagem dos temas" apresenta atividades como a experimentação, o estudo do meio, o desenvolvimento de projetos, os jogos, os seminários, os debates, a simulação, como propostas que possibilitam a parceria entre professor e alunos (BRASIL 2006, OCEM, p. 26).

Entendemos que por ser dinâmico e coletivo o processo de ensino-aprendizagem ocorre de modo recíproco. É necessário que se estabeleça uma cumplicidade entre professores e alunos e dos mesmos entre si, de modo que as estratégias utilizadas para o ensino de Física crie uma relação que permita o diálogo de ambas as partes dentro da sala de aula. Ainda pelas mesmas orientações (OCEM 2006, p. 28) esta apresenta o seminário como forma de o aluno se expressar de maneira coerente e inteligível, usando o desenvolvimento de temas como forma de estratégia para trabalhar as dificuldades apresentadas pelos alunos. Dessa maneira, estamos dando oportunidade aos estudantes a saírem da mesmice e aprofundarem-se em diferentes fontes de pesquisa a fim de que ele tenha todos os subsídios para formular suas próprias ideias e ter o controle de críticas e sugestões. A apresentação de um seminário desenvolve no aluno diversos fatores de criatividade desde à confecção de cartazes ao desenvolvimento da escrita, pois é necessária a produção de textos através de cartazes, transparência ou slides para serem apresentados aos demais alunos e professor. A melhor maneira de fazer o aluno refletir é orientá-lo, de certa maneira que, a descoberta venha por méritos da curiosidade através da pesquisa. Devemos evitar oferecer o produto já acabado como, por exemplo, técnicas de resolução problemas, pois estaremos contribuindo para o não desenvolvimento do raciocínio do educando e o retorno será o decoreba, que geralmente observamos nos diagnósticos escolares nos quais são realizados rotineiramente pelas escolas públicas brasileiras.

Para que possamos desenvolver uma atividade seja qual for, precisamos de um planejamento inicial para determinar de que forma se chegar aos objetivos esperados. Para a realização de um seminário, cabe ao professor intermediar e analisar os fatores que influenciam na aprendizagem do aluno como mostra o esquema¹ abaixo:

Interação Assimilação do Conhecimento

Ap

Mediação do Conhecimento

Figura 1. Esquema: Professor mediador, aluno e ambiente de aprendizagem

Fonte: OCN (Modelo Adaptado)

O esquema mostra que A representa o aluno; P, o professor; C, o conhecimento a ser aprendido; e Ap, o ambiente de aprendizagem. Esse esquema demonstra a importância do professor no processo didático de interação com o aluno para a assimilação de conhecimento. Também é destaque o ambiente de aprendizagem, aquele que oferece condições necessárias para a construção do conhecimento que o aluno precisa para desenvolver suas habilidades, esse ambiente possui influências internas e externas. Após a aquisição do conhecimento necessário, escola e professor deixam de fazer parte dessa etapa de aprendizagem do aluno, mas é esperado que permaneçam os saberes construídos durante o período de aprendizagem por meio da troca de experiências com o professor e com os demais alunos. Sendo assim, o professor – o agente mediador do conhecimento – estabelece condições para que se crie um ambiente de aprendizagem mais propício. A importância do seminário para aprendizagem é fundamental para ocorrer o desenvolvimento do educando, pois é nesse momento que se espera seu amadurecimento para lidar com opiniões, críticas e o respeito mútuo como destaca Rodrigues (2015).

-

¹ Adaptado de BRASIL. Secretaria de Educação Básica. Ministério da Educação. Orientações Curriculares para o Ensino Médio – Ciências da Natureza, Matemática e suas Tecnologias. Brasília, 2006.

A realização do seminário em formação avançada foi identificada como uma forma de trabalhar as diversidades de opiniões que emergiram, com base no respeito mútuo. Mesmo o conhecimento sendo pouco explorado, teve que ser estudado para aquisição de novos saberes em uma perspectiva interdisciplinar e desfragmentada do ensino. O professor foi identificado como mediador e facilitador para o aprofundamento da temática. (RODRIGUES, 2015, p. 767).

Por fim, percebemos variados benefícios de usar o seminário como uma das funções metodológicas em sala de aula nas mais diferentes disciplinas, ainda mais quando se trabalha com uma Física, que segundo os alunos, tem um alto grau de complexidade, assim a aprendizagem do discente é fundamental para o seu desenvolvimento como propôs Rego (1995, p. 107) ao dizer que "o bom ensino é aquele que se adianta ao desenvolvimento", ou seja, o desenvolvimento só amadurecerá, se antes vier o aprendizado. Nossa pesquisa se limitou a analisar o seminário como método intermediário para o aprendizado em Física através da interação dos alunos e na socialização dos estudos, obtendo resultados bastante satisfatórios. Ainda cabem outros estudos de diferentes aspectos a serem analisados acerca dessa técnica fértil de carente análise.

1.2. O papel do professor como intermediador no processo ensino-aprendizagem

Diante das inúmeras dificuldades do atual cenário educacional brasileiro, professores buscam incansavelmente meios que possam favorecer o processo de ensino-aprendizagem no ambiente escolar. Segundo Campos (1977 p. 28), o grande obstáculo para que se tenha êxito nesse processo, talvez seja responder a seguinte pergunta: qual é a definição de aprendizagem? Vários autores encontram dificuldades para formular uma definição e acabam divergindo entre si quanto à explanação de seus conceitos, então, dentre as várias definições expostas por Campos (op cit, p. 28-29) destacamos a que melhor expressa o sentido de aprendizagem que é definida como "o processo de associação entre uma situação estimuladora e a resposta", ou seja, para que ocorra a aprendizagem, é preciso que haja estímulos recíprocos entre professor, que tem a difícil tarefa de ensinar, e o aluno ao responder com sua desenvoltura, sua capacidade e suas potencialidades tanto físicas como mentais, portanto, acreditamos que para se chegar ao objetivo almejado, o ponto de partida é conhecer o caminho que leve o aluno a desenvolver suas habilidades, usando a definição de aprendizagem para termos um norte do que trabalhar e as necessidades curriculares a serem utilizadas.

No atual cenário em que a educação brasileira passa por mudanças através de uma reforma educacional por meio de uma Medida Provisória (MP) de nº 746/2016, que atinge diretamente o ensino médio, alterando o currículo nessa etapa de ensino. Nós professores, temos a missão de resgatar o processo educacional utilizando-se de nossas técnicas de reinventar o ensino por meio de propostas metodológicas que contribuem para a melhoria do processo educacional no qual estamos inseridos. O vigente currículo é composto por treze disciplinas obrigatórias, divididas entre as áreas de Linguagens, códigos e suas tecnologias (Português, Artes, Educação Física, Espanhol e Inglês) Ciências da natureza e suas tecnologias (Biologia, Física e Química), Ciências humanas e suas tecnologias (História, Geografia, Sociologia e Filosofia) e Matemática e suas tecnologias. Com a mudança proposta, 60% da carga horária será de acordo com o que for estabelecido pela Base Nacional Curricular Comum (BNCC) e os 40% restantes será escolhido de acordo com a opção desejada pelo aluno, muda-se também o tempo destinado às atividades dos alunos na escola. Se para alguns alunos eram enfadonhas às 04 horas/aula, estas serão gradativamente aumentadas para 05 horas/aulas, segundo o que foi estabelecido.

Mudanças sempre vêm acompanhadas de desconfiança e otimismo. Por enquanto aguardemos os impactos que a reforma do ensino médio trará para a melhoria na qualidade da educação de nossos alunos, sabemos que reformas educacionais são sim necessárias, mas que esta poderia ser aplicada de outra forma e em outros aspectos como é o caso da melhoria de condições de trabalho para o professor, visto como sujeito mediador do processo de ensino-aprendizagem dos educandos, por isso, entendemos que é nesse profissional que o investimento educacional deveria ser garantido para ocorrer a verdadeira reforma educacional.

No ano de 2013, o Governo Federal lançou o programa intitulado como Pacto pelo Fortalecimento do Ensino Médio através da portaria nº 1.140 de 22 de novembro de 2013, que tinha como objetivo a formulação e implantação de políticas para elevar o padrão de qualidade do ensino médio brasileiro através de formações continuadas para professores que estavam cadastrados no SISMÉDIO. O programa contava com professores mediadores de que utilizavam o material de apoio disponibilizado para *download* através de arquivos em PDF e eram bastante didáticos e simplificados. Os encontros ocorriam semanalmente, e neles ocorriam debates sobre proveitosos com o intuito de discutir melhorias para a educação, porém o pouco tempo para aplicação fez com que o programa não tivesse tanto impacto como o esperado, sendo que o investimento na formação do professor ficou um pouco abaixo do

esperado, porém o pouco que foi repassado serviu para que muitos profissionais afinassem suas metodologias para o trabalho em sala de aula.

O professor é a figura mais importante de uma instituição, a falta dele em um dia letivo causa um verdadeiro blackout no expediente de trabalho, tendo que a coordenação escolar correr para reorganizar o ambiente de acordo com as necessidades, por isso que acreditamos na relevância de sua função no processo de ensino-aprendizagem como propõe Oliveira (2014, p. 04) sobre o papel do professor quanto a sua contribuição ante uma sociedade em transformação, para tornar o aluno crítico e criativo, por intermédio de seus conhecimentos e experiências usando sempre o diálogo, uma vez que sempre aprendemos uns com os outros através da interação, desta forma, entendemos que esse é o sentido transformador disseminado pelo professor em sala de aula. Desafiar o aluno faz parte do processo educacional, objetivando transformá-lo em um aluno sujeito da ação. Esse pensamento é comungado por Libâneo (2006, p. 30), em que o aluno tem que passar por uma transformação para se tornar um sujeito pensante, aprendendo a pôr em ação o seu potencial de pensamento cognitivo construído e reconstruindo conceitos, habilidades e valores. Cabe ao professor ser o guia pedagógico capaz de desenvolver no aluno capacidades cognitivas e afetivas, objetivando a construção de bases estruturais de pensamento, ou seja, entendemos que o verdadeiro papel do professor é ser o mediador do conhecimento e não ser um mero agente transmissor de informação.

Segundo o decreto determinado pela Lei de Diretrizes e Bases da Educação (LDB) de nº 9.394/96, em seu artigo primeiro, assegura os direitos à educação a todo cidadão e que as práticas educativas formativas iniciam-se desde a família até as manifestações culturais, disciplinando a educação escolar, que se desenvolve predominantemente por meio do ensino, em instituições próprias, porém com elo ao mundo do trabalho e à prática social. Assim, no artigo 13 da referida lei, no título IV - **DA ORGANIZAÇÃO DA EDUCAÇÃO NACIONAL,** que se ocupa da função a ser adotada pelo professor diz:

- I. Participar da elaboração da proposta pedagógica do estabelecimento de ensino;
- II. Elaborar e cumprir plano de trabalho, segundo a proposta pedagógica do estabelecimento de ensino;
- III. zelar pela aprendizagem dos alunos;
- IV. estabelecer estratégias de recuperação dos alunos de menor rendimento;

V. ministrar os dias letivos e horas-aula estabelecidos, além de participar integralmente dos períodos dedicados ao planejamento, à avaliação e ao desenvolvimento profissional;

VI. colaborar com as atividades de articulação da escola com as famílias e a comunidade.

Entende-se, como descrevemos anteriormente, que segundo a LDB, o professor não é visto mais como o agente que repassa informações, mas sim como um mediador educacional, que participa desde a elaboração da proposta pedagógica, ou seja, aquela que vai nortear o ensino das disciplinas no ano corrente até a colaboração de atividades que envolvam a escola e a família, isto é, o professor tem grande responsabilidade pela aprendizagem e formação do aluno, já que o seu contato com ele é maior, não tirando também a incumbência familiar.

Segundo Libâneo o que o professor precisa é

(...) juntar a cultura geral, especialização disciplinar e a busca de conhecimentos conexos com sua matéria, porque formar o cidadão hoje é, também, ajudá-lo a se capacitar para lidar praticamente com noções e problemas surgidos nas mais variadas situações, tanto do trabalho quanto sociais, culturais, éticas (LIBÂNEO, 2006, p. 43).

Como meio de facilitar o aprendizado, o professor precisa assumir o papel de mediador que lhe foi atribuído e capacitar o aluno para as diversas ocasiões em que ele irá encontrar, ou seja, prepará-lo para desenvolver competências e habilidades para resolver situações-problema e adquirir a formação necessária para compreender e participar do mundo em que vive. De acordo com os Parâmetros Curriculares Nacionais (PCN+ 2002, p. 80), para o ensino médio, a figura do professor como mediador do conhecimento é de suma importância para o aprendizado do aluno, já que ambos estão sempre em contato, dessa forma, o mediador sempre busca interferir por meio do diálogo a aquisição de conhecimentos.

Ainda com base nos mesmos parâmetros, a fragilidade do aluno pode ser detectada pelo professor de várias maneiras, este intervém e usa o diálogo como uma das ferramentas fundamentais. Segundo os PCN+

Uma aula com diálogo, na qual os alunos fazem uso da palavra para manifestar suas ideias, pode ser fonte de informação para o professor conhecer como pensam seus alunos, podendo detectar suas dificuldades, problemas de aprendizagem e interesses. Apresentações escritas e orais feitas pelos alunos também podem dar pistas ao professor de conceitos malformados, possíveis lacunas, e servir como instrumento de replanejamento de ações. Igualmente importantes são as autoavaliações, em que os estudantes têm a oportunidade não apenas de reconhecer e manifestar suas

próprias dificuldades, como de compreender a necessidade das avaliações no ensino e em outras atividades da vida no trabalho ou social. (BRASIL, PCN, 2002, p. 110)

Fica evidente a importância do professor como mediador no processo de detecção das dificuldades do aluno bem como sua colaboração em apresentar técnicas que permitam consolidar a compreensão dos fatos em evidência. E ainda proporcionar ao estudante maneiras de como elaborar métodos para solucionar os problemas que serão apresentados, como destaca a BNCC (2015, p. 138) sobre o papel do professor que é o de assegurar aos alunos a possibilidade de motivação e desenvolvimento da autoconfiança por meio de sua atuação ativa em experiências desafiadoras e atraentes. Em síntese, o professor tem a difícil tarefa em preparar os alunos para cumprir sua função social como cidadão, não deixando de lado as práticas educacionais, indispensáveis para o desenvolvimento dos conhecimentos. Dessa forma, a partir do instante em que se assume o papel de mediador do conhecimento, o docente poderá associar de forma brilhante os conteúdos estudados com o cotidiano do aluno, mostrando que a Física não é uma disciplina somente de manipulação matemática, mas aquela que tem o poder de despertar no educando a curiosidade, o gosto pela ciência e contribuir para seu desenvolvimento intelectual.

Infelizmente, essa prática ainda está longe de se consolidar. O ensino de Física ainda é marcado por formulações matemáticas em que o professor ensina técnicas de decorar fórmulas com o intuito de resolver exercícios ou preparar seus alunos para os exames do vestibular, deixando a mercê o real objetivo do ensino de Física. Segundo os (PCN+ 2002) "fazer com que os jovens adquiram competências para lidar com as situações que vivenciam ou que venham a vivenciar no futuro, muitas delas novas e inéditas." Todavia, os educandos voltam sua atenção para a obtenção de vantagens, a ponto de a nota ser o fator de importância maior do que o próprio aprendizado, não importando o grau de maturidade que irão adquirir para poder se expressar e expor opiniões. Segundo Libâneo (2013, p. 114), o trabalho desenvolvido pelo professor só terá frutos a partir do instante em que os métodos ensinados se transformarem em conhecimentos, habilidades, capacidades e atitudes do aluno.

Tendo em vista as condições necessárias para a fertilização das ideias, a figura do professor tem um papel fundamental em lançar a semente do conhecimento através do preparo das atividades que visem o desenvolvimento do aluno. Desse modo, ao mediar as ações, ele deve sempre buscar meios que possam estimular o educando a participar das atividades, pesquisas, debates e dos momentos de interação, que fazem parte do processo de engrandecimento metodológico das temáticas em questão. Rego estabelece (1995, p. 110) que

os processos de interações sociais são condições necessárias para o desenvolvimento do conhecimento por parte do aluno, principalmente as que acorrem por meio do diálogo, da cooperação e da troca de informações mútuas, cabendo, portanto, ao professor intermediar as divergências de opiniões para se chegar a um objetivo comum. Como nossa proposta é de trabalhar a intermediação da aprendizagem por meio do seminário, é tarefa do professor estabelecer as condições para a integração do estudante, preparando e organizando o ambiente para que ocorra uma aprendizagem satisfatória no ensino de Física, através de orientações, intervenções e diálogo.

Segundo Althaus (2011) é papel do professor no seminário

O papel do professor no seminário consiste em coordenar as diversas atividades; orientar e guiar os alunos em todas as fases; fazer a síntese. No entanto, no *seminário*, o professor é um diretor do trabalho, não é o seu executante. Quando se estabelece o diálogo, o seu papel é o de vigiar e orientar a sua evolução, intervindo apenas para formular com maior exatidão os problemas descobertos pelos alunos ou para encaminhar a discussão para outros campos. É uma tarefa essencialmente orientadora. (BALCELLS E MARTIN, 1985 apud ALTHAUS, 2011, p. 05)

Para garantir o ensino e a aprendizagem do educando, o comportamento assumido pelo professor em trabalhar a motivação dentro da sala de aula é um fator que contribui para assegurar este método, já que esta é um dos grandes obstáculos no processo de aprendizagem dos educandos desde a organização das atividades até a execução de trabalhos. Segundo Campos (1979)

O professor, como orientador das atividades dos alunos, é o mediador entre os motivos individuais e os legítimos alvos a serem alcançados. Mais do que isto, compete ao mestre, como agente socializador, incutir os padrões da cultura, isto é, novos motivos, a fim de que certas necessidades sejam desenvolvidas, determinando a aquisição, por parte dos educando, daqueles tipos de comportamento que garantem um ajustamento social eficiente. (CAMPOS 1979, p. 107)

O professor deve ensinar aos educandos os caminhos para o desenvolvimento da aprendizagem cognitiva, que para Campos (1979, p. 53), é aquela que influencia na natureza intelectual, como por exemplo, a percepção, raciocínio, memória e etc. Desse modo, questões de Física que envolvam a aplicação de uma equação, deixarão de ser solucionadas por meio do decoreba natural da maioria dos estudantes, e passará a ser explorada de melhor maneira. Ao tentar solucionar o problema, o aluno utiliza os processos intelectuais ou cognitivos para poder então entender as causas e os efeitos decorrentes do fenômeno estudado. Também existe a aprendizagem ideativa, que se diferencia entre conhecimento e informação, ou seja, a

informação é quando o aluno apenas memoriza uma determinada equação e não sabe aplicála, já quando o estudante é conhecedor de uma determinada equação e a utiliza para interpretar os fenômenos naturais ao usar sua aplicabilidade, temos um exemplo de conhecimento.

Entendemos que a importância do professor no processo de ensino-aprendizagem vai além das quatro paredes de uma sala de aula, este processo que começa a partir do momento em que ocorre o planejamento das atividades aos conhecimentos repassados em sala. O fator que contribui para a ocorrência desse processo é a interação desenvolvida entre educador e aprendiz, ou seja, o professor tem a função de auxiliar o aluno, orientando-o no momento de suas necessidades com o propósito de estimular a curiosidade, o desenvolvimento intelectual e a construção coletiva do conhecimento compartilhado, oferecendo-o também a possibilidades de agir, transformar e refletir a organização do próprio aprendizado. De acordo com Novais (1977, p. 89), a qualidade do ensino se dá pela troca interativa que ocorre entre professor-aluno através de uma atmosfera psicológica que acontece na sala de aula. Ainda expandimos essa análise para além da sala de aula, tendo como exemplo a ser seguido a postura moral e o respeito mútuo exercido pelo professor.

Portanto, é necessário que se invista no professor através de formações continuadas que visam prepará-lo para trabalhar de forma correta. A tecnologia é capaz de conectar as pessoas em qualquer lugar do planeta e tem fortes implicações na educação, desse modo, as respostas são rápidas por estarmos inseridos numa geração imediatista, que cresce bastante devido ao uso das novas tecnologias. Essas mudanças atingem diretamente a dinâmica de interação entre aluno e professor, ou seja, o seu papel era limitado a apenas transmitir informações, passa a ser também o de orientar. Isto é, o professor começa a ser visto como aquele que é responsável por mediar os processos, que auxilia os alunos a construírem seu próprio conhecimento, formando-os como cidadãos na busca de valores, atitudes e habilidades para se tornarem autônomos de sua formação. É necessário que a relação entre professor-aluno ocorra de forma construtiva e afetiva, pois compete a este profissional carregar dentro de si, condições para fazer com que as coisas aconteçam, seja um médico ou um docente amoroso, assim deve ser o professor, aquele que tem não só afetividade pelo que faz, mas tenha efetividade ao fazer. Desta forma, cabe a nós professores, exercer o papel de mediador dessas respostas ao mesmo tempo que orientador sobre as mudanças. Nesse sentido, caminhando juntos para o desenvolvimento do ensinoaprendizagem de nossos alunos e tornando-os indivíduos socialmente pensantes naquilo que fazem.

1.3. A História da Física e de suas equações e a importância para ensino

Estudar História se faz necessário para que possamos compreender como as ações realizadas pelo homem ou pela natureza (no passado) podem influenciar diretamente na nossa sociedade no presente ou no futuro. A História é todo evento que já aconteceu, e através desses, passamos a narrar os fatos que marcaram épocas e que tiveram implicações, seja no desenvolvimento ou no retrocesso de um povoado, tribo, reino ou nação. A História estava lá para escrever mais um capítulo de um vasto livro que não tem fim. Cada indivíduo possui a sua própria história, ao nascer, crescer e tomar consciência de sua missão, ele passa a construir sua própria linha do tempo, fazendo parte da construção histórica de uma sociedade.

Diferente de alguns pensamentos, a história não é narrada somente nos livros, cada um possui a sua e pode ser contada através de roupas, símbolos, músicas, museus, filmes, política, religião, esportes e nas equações. Ao estudar História, passamos a entender a conduta humana nos processos de desenvolvimento sociais, sendo que um de seus principais objetivos é o de resgatar os aspectos culturais de uma determinada nação. Ao estudar História, passamos a compreender os desafios que a sociedade moderna impõe, cabendo a nós decidir o que pode mudar e o que deve permanecer como testemunho para as gerações futuras.

No cotidiano escolar, nos deparamos com diversas situações nas quais os alunos não conseguiam aprender o conteúdo, muitos reclamavam da forma como as aulas eram expostas pelo professor. Na disciplina de Matemática, por exemplo, em que o aluno decorava as equações e a partir daquele ponto tinha que saber as operações básicas da disciplina para o desenvolvimento e resolução do problema. Alguns alunos gostaram da proposta de sempre resolver problemas usando tais mecanismos matemáticos, porém não entendem o sentido da resposta encontrada. Ao longo desse tempo, verificamos que as aulas de Física foram perdendo a atenção dos estudantes, os professores dessa disciplina precisam renovar as metodologias para então atrair novamente os alunos e fazê-los protagonistas na sala de aula, ou seja, encontrar uma maneira de dar sentido a essas aulas, outrora cansativa e sem significado para os discentes. A alternativa utilizada durante as aulas foi a de inserir o contexto histórico da Física, ou seja, antes de expor as equações no quadro, como faz a maioria dos professores dessa disciplina, resolvemos estruturar a contextualização dos

processos sociais, históricos e culturais que culminaram na formulação das equações por seus idealizadores. Além disso, destacamos a importância desses contextos para o desenvolvimento da humanidade.

Vários autores atentam para a importância de trabalhar a história da Física como essência de sua compreensão, como aponta Menezes (1988 p. 08) "Não há como compreender sequer uma parte da Física sem ter presente a perspectiva histórica desta ciência e da aventura humana. Sendo integrante da cultura humana, a ciência não pode ser pensada em separado." O autor ainda aponta a história da Física como sendo essencial para conhecermos o desenvolvimento e a evolução de determinadas culturas.

A Física, como as demais ciências, condicionada que é em seu desenvolvimento pelas condições materiais e culturais, constitui um bom indicador da moderna evolução dos povos e das nações, melhor talvez que o Produto Bruto, melhor talvez que a música ou esporte (Idem, p. 08).

É indiscutível que a Física nos faz pensar, nesse sentido, é preciso ter uma mente aberta para se chegar a um elevado grau de concentração intelectual para encontrar as respostas que a natureza nos oferece. Com os nossos antepassados não foi diferente, os principais nomes da história da Ciência também se utilizaram dos rastros naturais para formularem as teorias e equações que usamos hoje. Da mesma maneira que diante de muitas divergências por parte da igreja, muitas vezes detentora do pensamento humano e de uma parcela da própria comunidade científica, por isso, acreditamos que seja válida a experiência de conhecermos um pouco a parte da história que marca a humanidade até o presente momento.

Na atual conjuntura educacional, em que temos alunos com déficits educacionais concentrados nas disciplinas relacionadas à área de Ciências da Natureza, a Física e a Matemática lideram no quesito desaproveitamento entre as demais disciplinas curriculares. Segundo os alunos, os professores se utilizam muito de fórmulas matemáticas sem proporcionar ocasiões que apresente sentido aos números encontrados nas resoluções dos problemas, estudar as teorias bem como explorar a sua história contribuiria para o conhecimento real dos estudantes. Por isso, alguns autores defendem o ensino da história da Ciência nas aulas do ensino médio por ter uma contribuição positiva para a aprendizagem. Esse não foi o caso de Martin Klein (1972), que em uma conferência realizada no MIT² no

.

² Sigla de *Massachusetts Institute of Technology – em português*, Instituto de Tecnologia de Massachusetts. Universidade privada de pesquisa localizada em Cambridge, Estados Unidos.

ano de 1970, justificou que os professores de Física selecionam materiais de cunho histórico e os utilizam com outros propósitos pedagógicos e cientifico, gerando uma interferência nas características tanto da História quanto da Física ensinadas. De acordo com ele, o que dificulta a relação da história da Física com o ensino de Física é a disparidade do ponto de vista entre os físicos e os historiadores.

O autor citado, ainda afirma que "é tão difícil de imaginar a combinação da complexa riqueza do fato, pelo qual o historiador luta, com o simples "insight" que os físicos procuram." (KLEIN, 1972 Apud PORTELA e LARANJEIRA 2005, p. 4). Klein conclui que, se a qualidade do ensino de ciências depende da História, este não terá qualidade, ou seja, é melhor renunciar seu uso do que usá-la de má qualidade. Mediante ao debate promovido nessa conferência, muitos autores e pesquisadores da área desenvolveram estudos sobre o tema em questão. Fazendo com que vários artigos fossem produzidos com discussões sobre o assunto, apesar dos argumentos repetitivos, isso tem colaborado bastante para que professores se utilizem dessa experiência de trabalhar o contexto histórico na sala de aula. O físico e historiador americano Stephen G. Brush foi um dos colaboradores do Projeto de Física de Harvard para ser usado em escolas secundárias, ele é reconhecido por ser um dos autores que muito se utilizou da história da Ciência, produzindo inúmeros estudos históricos para serem usados em salas de aula. Brush defende que o ensino focado na história da Ciência deve ser feito de forma que os professores afastem o dogmatismo expostos pelos textos e passem a ensinar o entendimento da Ciência com os significados sociais.

Com esse entendimento, introduzir os conceitos históricos da Física em sala de aula é primordial para que possa haver algum tipo de assimilação dos conteúdos. Essa colocação nas aulas faz com que seja instigada a curiosidade por conta dos fatos históricos ocorridos, com isso o professor ganha a atenção e a confiança da turma e traz para o meio escolar uma peça chave na construção da alfabetização científica que é o aluno. É dessa forma que podemos criar uma estrutura ambiental que favoreça a construção do conhecimento através da história da Física, permitir aos estudantes uma compreensão mais aprimorada da natureza, e ainda, manter sempre alerta para não distorcer a história de seus fatos reais. De maneira a não propagar a versão popular que são estampadas em alguns livros, transformando a informação repassada aos alunos como uma pseudo-história. Esse pensamento também é compartilhado por Delizoicov e Angotti (1992):

uma compreensão da natureza e dos processos tecnológicos que permeiam a sociedade. Qualquer cidadão que detenha um mínimo de conhecimento cientifico pode ter condições de utiliza-lo para as suas interpretações de situações de relevância social, reais, concretas e vividas, bem como aplica-lo nessas e em outras situações (DELIZOICOV e ANGOTTI, 1992, p. 17)

Depois da exposição vista, vários autores dão ênfase sobre a importância de podermos debater a história da Física no ensino médio. Ficou claro que após a exposição de tópicos históricos em sala de aula, os alunos se mostraram mais atentos nas colocações dos conteúdos estudados bem como desenvolveram uma rápida habilidade de raciocínio, ou seja, pudemos criar um ambiente favorável para a aprendizagem de Física, mediante sua história.

Estudar a história da Física já é uma missão desafiadora, falar da história e do desenvolvimento de suas equações torna-se ainda mais provocante pelo fato de não ser muito comum. Todavia, resolvemos assumir este compromisso e aliar essa parte escondida da Física ao estudo tradicional da sala de aula, dando significados àquilo que se está estudando como, por exemplo, entender o que representa uma equação. Cotidianamente, nos deparamos diversas vezes com uma pergunta e sempre obtemos uma resposta, seja de forma direta ou indireta, usamos equações em todas as partes, na escola, na rua, no trabalho e em muitas outras ocasiões. Não percebemos que, aquele emaranhado de letras que para muitos não representam absolutamente nada, moldam nossa trajetória nessa vida terrena. A palavra equação vem do latim "aequatio", que significa distribuir de forma igual, assim como algumas palavras vem dessa origem em que podemos citar, equador, equilibrar, igualdade etc. Na medida em que o tempo foi passando, surgiram adaptações para palavra e o termo mais comum é o que usamos hoje, cujo sentido é de igualdade, ou seja, igualar as partes.

Hoje, sabemos que as equações tem uma grande importância para a humanidade, sem elas não poderíamos imaginar como se chegar à Lua, assim Kepler iniciou a receita do bolo e Newton deu os ingredientes finais para que a humanidade pudesse usar o forno e se arriscar em uma aventura pelo espaço. Com essa analogia de receita e equações, foguetes e fornos, há aqueles que ainda as tem como simplificadores de complicação, isso mesmo, eles acreditam que as equações só sevem para complicar a vida. Argumento como esse comumente é ouvido entre estudantes secundaristas, mal sabem eles que ao pronunciarem essa alegação, a Física age indiretamente por meio de ondas e uma pequena equação dá sentido ao que ouvimos.

As equações são essenciais para a humanidade, elas deram ao homem a possibilidade de transformar incertezas em realidades. Como exemplo temos o momento em que o homem se aventurou ao mar de posse de um instrumento de navegação arcaico,

desenvolvido há cerca de 2.000 a.C, que serve de orientação com base em propriedades magnéticas conhecido por bússola. Se lançou ao desconhecido e navegando pela obscuridade, sem explicação, conseguiu chegar ao continente americano. Hoje, essas dificuldades não são tão encontradas por nós, podemos usar um Sistema de Posicionamento Global (GPS), que utiliza alguns cálculos para correção de tempo e, tendo a teoria da relatividade para calibra-lo, podemos determinar com alta precisão as posições da Terra e a direção correta do destino final que se deseja.

Tamanha foram as transformações sociais ocorridas devido à manipulação humana por conta do uso das equações, elas modificaram de vez o cotidiano da humanidade. A partir dessas transformações, podemos citar alguns casos como a Lei da Gravitação de Newton, que determina a força de atração entre dois corpos em relação a suas massas e suas distâncias, possibilitando prever os movimentos dos corpos do sistema solar ou no redirecionamento de um satélite. Outro caso são as equações de Maxwell que unificou os campos elétricos e magnéticos e como consequência, basta recordar que a luz é um fenômeno de origem eletromagnética levando a invenção da TV, do rádio, do radar e da comunicação sem fio. E ainda temos a famosa equação E = mc² de Einstein, conhecida por Relatividade, que teve como finalidade a mudança de visão do espaço e do tempo como também da matéria e da gravidade, levando ao desenvolvimento de sistemas de navegação por satélites. Como podemos perceber, são várias as aplicações das equações em nosso cotidiano que mostram a sua grande relevância para nossa sociedade, porém um fato triste de se notar é que pouco se sabe sobre seu contexto histórico, seus criadores, sua origem etc.

Para Stewart (2013), a história da humanidade vem sendo conduzida por uma equação, infelizmente, não se tem dado preferência à história das equações, sendo que pouco ou quase nada tem destaque nos livros. Enquanto guerras, desastres políticos, queda de reinos e outros fatos sem muita relevância têm ganhado destaques especiais em documentários, artigos, revistas e livros. Isso não é bom, pois acabamos pecando pela omissão dos fatos, nos esquecendo de etapas importantes da evolução da humanidade que foram construídas por uma equação. Tomemos como exemplo básico as leis da Termodinâmica que desencadeou entre os séculos XIII e XIX. A Revolução Industrial com o uso das máquinas, substituindo o trabalho artesanal ou ainda quando Maxwell desenvolveu suas equações para o eletromagnetismo contribuiu substancialmente para toda a revolução tecnológica na qual teve início no final do século XIX e continua até os dias atuais.

Ao estudar História, criamos a possibilidade de compreender como as ações do passado influenciaram no presente. Uma pequena equação tem por trás uma grande história, sendo em muitos casos o ponto de partida para a evolução da civilização humana no âmbito tecnológico ou social. De acordo com (VYGOTSKY, 1984, p. 74), "Estudar alguma coisa historicamente significa estudá-la no processo de mudança; esse é o requisito básico do método dialético." Dessa forma, acreditamos que ao estudar a história das equações, estamos possibilitando aos alunos conhecer os processos sequenciais que deu base à fundamentação para que essas junções de letras surgissem, mas nem todas as equações nas quais conhecemos hoje tinha esse padrão exposto por livros e professores. "Até Galileu e Newton expressaram seus importantes resultados – a lei da queda dos corpos de Galileu e as leis do movimento de Newton – em palavras, e não com equações (...)" (CREASE, 2011, p. 09). Revelações como essa estão perdidas na cortina do tempo, apagadas pela nossa falta de interesse de explorar essa rica fonte de informação.

Assim, cabe a nós professores, abrir essa cortina e fazer clarear a luz da esperança e dessa maneira, possamos utilizar essa situação para alavancar o ensino de Física em nossas escolas, coligando a história da Física, em especial das equações com o conteúdo usado tradicionalmente nas salas de aula. Essa pode ser uma maneira ativa de despertar nos alunos o gosto pela procura e o prazer pela descoberta, desse modo, o professor estará dando um importante passo para impulsionar o desenvolvimento construtivo dos discentes, possibilitando a eles serem agentes do próprio conhecimento.

Vejamos o tema velocidade média, um assunto abordado no início do 1° ano do ensino médio e que muitos professores argumentam ser de simples abordagem, mas a maioria acaba errando ao tentar matematizar o conteúdo, deixando de lado o fundamental no ensino de Física que é ensinar o educando a pensar. Todavia, vejamos o caráter histórico do assunto: quem foi o responsável em introduzir o conceito de velocidade e quem a usou pela primeira vez? Se não nos atentarmos a responder a essas indagações, os conteúdos repassados em sala se tornarão supérfluos para os estudantes, de modo que a utilizarem técnicas como o decoreba" que não são muito favoráveis para os padrões de aprendizagem que desejamos obter. Delizoicov e Angotti (1992, p. 23), já se posicionavam sobre o que mencionamos ao tratar do assunto sobre função "Levando em conta a função do 2° grau, pretendemos garantir a extensão, que facilita a apreensão do conhecimento desde que não seja superficializado ou mesmo banalizado."

Na maioria dos casos, os livros didáticos disponíveis para uso, erram em não abordar de forma mais abrangente os contextos históricos, pois é nessa etapa de ensino que temos que preparar os alunos para novas situações nas quais os ajudem a compreender que a Física é uma ciência que usamos muito a nossa capacidade de raciocinar e encontrar soluções socialmente transformadoras. Como destaca os Parâmetros Curriculares Nacionais ao informar sobre a identificação das competências que se deseja adquirir no ensino médio "Esse objetivo mais amplo requer, sobretudo, que os jovens adquiram competências para lidar com as situações que vivenciam ou que venham a vivenciar no futuro, muitas delas novas e inéditas" (BRASIL, 2002, p. 61). A importância de usar a história da Física para o ensino-aprendizagem é compartilhada com Delizoicov e Angotti (1992), que argumentam sobre buscar o equilíbrio entre as situações, ou seja, a abordagem deve dosar a história e a prática (a que envolve cálculo) como fundamentam a seguir:

(...) pois os conteúdos são partes fundamentais de um conhecimento que foi e continua sendo construído e tem, portanto, caráter histórico. A visão que veiculada pelos livros didáticos privilegia sobremaneira a Física como produto, negligenciando, simultaneamente e de forma significativa, seu processo de produção (DELIZOICOV e ANGOTTI, 1992, p. 24).

Trabalhar os conteúdos enleados ao universo dos alunos torna-se possível o fortalecimento em sua aprendizagem, aproximando a abstração e a realidade. De acordo com Feynman (2000), é difícil imaginar como educar alguém em um sistema no qual prevalece a autoprogramação em que pessoas passam e ensinam outros a passarem em provas sem saber o essencial. Infelizmente, para o sistema educacional que temos atualmente, essa proposição é verdadeira, pois acompanhamos diariamente quer seja na rede pública ou na rede particular, alunos sendo programados para passarem em exames e vestibulares, usando como mecanismo o "decoreba" e esquecendo-se do mental. Felizmente, muitos professores já perceberam que podem mudar a perspectiva do ensino de Física devido ao espaço que a sua história vem conquistando nas salas de aula das escolas públicas brasileiras, sendo de suma importância para os estudantes conhecerem os aspectos vividos por seus criadores, uma vez que entenderão o seu significado.

Aos poucos conseguimos incrementar nas aulas de Física essa contextualização, dando espaço à história da Física e colocando em determinados instantes da aula, pontos essenciais para que os educandos desenvolvessem a lógica do raciocínio e dessa forma, entender o pensamento dos cientistas no momento de elaboração de suas teorias. A história da Física colocada em sala de aula, fez com que nossas aulas ficassem mais ricas e

profundamente mais interessantes, assim recebemos com muito proveito o *feedback* dado pelos alunos. Queremos destacar que o objetivo desse trabalho não é transformar nossas aulas de Física em aulas de História, mas sim trazer para o ambiente educacional uma contribuição formal para o ensino-aprendizagem do estudante, dando-lhe condições para que se observe que a Física está intimamente ligada aos fatores filosóficos, sociais, religiosos, culturais e tecnológicos.

A proposta dos PCN para o Ensino Médio deu um novo sentido ao ensino de Física na escola secundarista, as competências e as habilidades apresentadas na proposta, sugerem o uso da história da Física no ensino e que ao final da escolaridade básica, o aluno consiga

Reconhecer a Física enquanto construção humana, aspectos de sua história e relações com o contexto cultural, social, político e econômico.

Reconhecer o papel da Física no sistema produtivo, compreendendo a evolução dos meios tecnológicos e sua relação dinâmica com a evolução do conhecimento científico.

Dimensionar a capacidade crescente do homem propiciada pela tecnologia. Estabelecer relações entre o conhecimento físico e outras formas de expressão da cultura humana.

Ser capaz de emitir juízos de valor em relação a situações sociais que envolvam aspectos físicos e/ou tecnológicos relevantes. (BRASIL, 1999, p. 23)

Fortalecendo a corrente sobre o trabalho da História da Física nas aulas do ensino médio como instrumento de apoio e parte indispensável à formação da cidadania contemporânea, os PCN+ ressaltam que:

(...) para além da história da Física, cada lugar tem sua história, que inclui contribuições para o desenvolvimento do saber inserido na realidade da cidade ou da região com seus protagonistas próprios. Investigar e resgatar a história do desenvolvimento do saber técnico e científico local pode também ser uma estratégia significativa na direção do estabelecimento de uma visão da ciência enquanto atividade humana e social. (BRASIL, 2002, p. 85).

Sendo uma das funções centrais do ensino médio a de preparar para a vida e a capacitação para uma aprendizagem permanente na fundamentação cientifica e tecnológica, pudemos concluir que ao se trabalhar com a história da Física em sala de aula na forma de seminários, os alunos tiveram autonomia de pesquisar, preparar e expor os assuntos que são pouco explorados no currículo anual. Nesse sentido, foi proporcionado aos estudantes o protagonismo e a responsabilidade de fazer da pesquisa uma ponte em busca de novos conhecimentos que envolvam a seleção do material de estudo, a coleta de informações bibliográficas, leitura e reflexão sobre as ideias dos autores, a discussão dos conhecimentos

adquiridos e por fim, a montagem da apresentação e sua aplicação metodológica. Se essa prática for estabelecida de maneira correta, ela será capaz de fazer transformações e quebrar velhas concepções comparadas à história. Não queremos ensinar a história da Física e sim usá-la como elemento facilitador para sua melhor compreensão dos estudos em sala de aula.

2. O REFERENCIAL TEÓRICO

Visando trabalhar com a proposta do uso do seminário na sala de aula, procuramos propor um referencial que norteie nosso trabalho, assim devido aos inúmeros benefícios pedagógicos que o seminário oferece como, por exemplo, o trabalho em grupo, a troca de conhecimentos, o despertar de ideias, a socialização de opinião etc. As teorias de Vygotsky nos ajudou no desenvolvimento desse projeto de trabalho. Diferentemente de Piaget, que supõe o equilíbrio como um princípio básico para explicar o desenvolvimento cognitivo (o indivíduo constrói a compreensão do mundo). Vygotsky parte da premissa de que esse desenvolvimento deve ser entendido com referência ao contexto social e cultural (microescala) no qual ocorre, ou seja, a teoria vigotskyana propõe que o desenvolvimento humano está aplainado sobre bases interacionistas. Desse modo, existe uma reciprocidade do homem, seu desenvolvimento e seu contexto cultural, pois segundo ele o desenvolvimento se dá de fora para dentro, isso quer dizer que a evolução cognitiva acontece primeiramente na convivência com o outro, para depois ser internalizada individualmente. Portanto, sem a influência do outro não há desenvolvimento.

A ideia proposta por Vygotsky também é conhecida por teoria Sociointeracionista, pois de acordo com o autor, o desenvolvimento histórico acontece do meio social para o individual, "o mecanismo de mudança individual ao longo do desenvolvimento tem sua raiz na sociedade e na cultura." (VYGOTSKY, 1984, p. 8). A influência em que o meio social favorável oferece ao educando através do contato com a interação sob orientação do professor, que tem o papel de mediar o processo de ensino-aprendizagem, tornou-se cômodo para que pudéssemos alicerçar nossa ideia de usar seminários como um método pedagógico para facilitar o ensino de Física associado à teoria Sociointeracionista de Vygotsky.

Cabe a cada professor utilizar-se do seminário e aplicar suas técnicas que dê possibilidades de promover a inclusão e o desenvolvimento dos processos de ensino-aprendizagem, tão necessários para a vida acadêmica do aluno, pois se este não desenvolve suas capacidades e habilidades mentais não há ensino. E o resultado do processo de ensino-aprendizagem é o conhecimento.

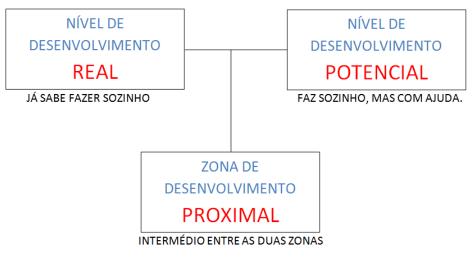
2.1. O Sociointeracionismo de Vygotsky

Lev Semyonovitch Vygotsky nasceu em 17 de novembro de 1896, em Orsha, pequena cidade perto de Minsk capital da Bielorrússia, região que era dominada pelo Império Russo. Seus pais eram de uma família culta judaica com boa condição econômica, que permitiu a Vygotsky uma formação sólida desde sua infância. Após formar-se em Direito pela Universidade de Moscou em 1917, resolveu voltar à cidade de Gomel, local onde concluiu o primeiro grau. No mesmo ano, aconteceu um dos momentos mais importantes do século XX e que transformou a ordem política mundial, a Revolução Russa, na qual ele apoiou. Ensinou Literatura, Estética e História da Arte e ainda fundou um laboratório de Psicologia, que rapidamente ganhou destaque graças à riqueza do acervo. Seu pensamento doador e sua intensa atividade lhe rendeu uma produção de mais de 200 trabalhos científicos. Para Vygotsky, o indivíduo se desenvolve não apenas pela maturação biológica e sim, pela interação com o meio. Partindo dessa interação, o homem construiu os instrumentos que são classificados por: instrumentos físicos (como um lápis, uma mesa ou uma cadeira) e os instrumentos abstratos (crenças, valores e costumes dos homens). Para Oliveira (1997 p. 23) as pesquisas de Vygotsky formam três pilares:

- 1. a funções psicológicas tem suporte biológico pois são produtos da atividade cerebral;
- 2. o funcionamento psicológico fundamenta-se nas relações sociais entre o indivíduo e o mundo exterior, as quais se desenvolvem no processo histórico;
- 3. a relação homem/mundo é uma relação mediada por sistema simbólicos.

Na citação acima, apontamos o terceiro pilar como sendo de grande importância para nossa pesquisa, pois quando Vygotsky cita o termo símbolo, ele está representando a linguagem, signos, fala e leitura. Dessa forma, o homem, ao obter essas características, estará apto a um maior crescimento social, ou seja, ele está incluso no meio. Outro conceito proposto por Vygotsky, é a Zona de Desenvolvimento Proximal³, em seus estudos, ele observou existirem atividades que podem ser realizadas sem o auxílio de outras pessoas por relacionar-se a conceitos que já foram internalizados pelo indivíduo. A essa relação denominou de Nível de Desenvolvimento Real⁴, como também a possibilidade de realizar algumas tarefas com a ajuda de outras pessoas, isto é, o Nível de Desenvolvimento Potencial⁵.

⁵ A expressão Nível de Desenvolvimento Potencial será substituída no texto pela sigla NDP


³ A expressão Zona de Desenvolvimento Proximal será substituída no texto pela sigla ZDP

⁴ A expressão Nível de Desenvolvimento Real será substituída no texto pela sigla NDR

"A ZDP corresponde ao espaço existente entre o NDR que se costuma determinar através da solução independente de problemas e o NDP determinado através da solução de problemas sob a orientação de outro ou em colaboração com companheiros mais capazes" (Vygotsky, 1984, p. 97).

O esquema abaixo mostra como se dá os níveis de desenvolvimento segundo Vygotsky.

Figura 2. Etapas do desenvolvimento da aprendizagem segundo Vygotsky

(Fonte: próprio autor).

Vygotsky atribuiu ao professor o importante papel de impulsionar os processos de desenvolvimento da aprendizagem, ou seja, a ideia de uma proporção direta entre o desenvolvimento e aprendizado, não significa que se deve apresentar uma grande quantidade de conteúdos aos alunos. O importante, segundo o pensador, é que lhes sejam apresentadas diversas formas de pensamento, não sem antes se detectar quais situações que eles têm de absorvê-los.

Vygotsky faleceu em 11 de junho de 1934, aos 37 anos, devido a uma tuberculose. Após sua morte, suas ideias foram rejeitadas pelo governo soviético, a ditadura de Stalin censurou seus trabalhos no período de 1936 a 1958, por conta disso, seus livros *Pensamento e Linguagem* e *A Formação Social da Mente* só foram lançados no Brasil, consequentemente em 1962 e 1984, devido ao trabalho de seus amigos em disseminar suas obras que permanecem até à idade contemporânea com perspectiva de nunca morrer.

2.2. A Teoria Sociointeracionista aplicada ao seminário em sala de aula

Lev Vygotsky foi um psicólogo que fundamentou seu pensamento no Cognitivismo. Suas teorias são referências para trabalhos em comunidades de aprendizagem, estudos e pesquisas ligadas à área educacional. Uma de suas teorias é a ZDP, ela nos auxilia na compreensão de como as interações podem favorecer o uso dos seminários em sala de aula, pois a realização dessa atividade prima por favorecer as potencialidades das práticas de aprendizagem e convivência, sendo que são elas que fortalecem as aprendizagens de todos os alunos. Para a realização de um seminário em sala de aula, tomamos por base a teoria Sociointeracionista de Vygotsky que, segundo Rego (1995) diz que o desenvolvimento cognitivo de uma pessoa se dá por meio da interação social, ou seja, de seu convívio com outros indivíduos e com o meio.

O esquema abaixo expõe de forma organizada como pode se dá o desenvolvimento cognitivo de uma pessoa.

OUTROS
ALUNOS

ATRAVÉS DA PARTICIPAÇÃO DE ATIVIDADES
CULTURAIS ORIENTADAS POR

PROFESSORES
ALUNOS EXPERIENTES

Figura 3. Esquema do desenvolvimento cognitivo de uma pessoa

Fonte: próprio autor

Então, o que o professor deve fazer inicialmente, é planejar a atividade, organizar o que vai ser trabalhado e executado pelos alunos. Passada a etapa do planejamento vem a formação dos grupos de alunos, esses agrupamentos devem ser heterogêneos e com a escolha

de um líder para guiar as atividades em cada grupo. Pois segundo o que nos mostra a representação acima, é através da participação em atividades orientadas por intermédio do professor e com a ajuda de companheiros de mais habilidades que os alunos interiorizam os instrumentos necessários para pensar e se aproximar da resposta de um problema, de maneira mais consciente do que fariam se tivessem sozinhos. Esse é um dos caminhos que leva a ZPD, já citada anteriormente, ou seja, a distância entre o que os estudantes já sabem fazer sem ajuda de alguém mais experiente (NDR) e o que ele já está em vias de fazer sozinho, mas que no momento só conseguem com a orientação do outro (NDP). Essa fundamentação teórica proposta pelo autor, alicerça nossa ideia de trabalhar o uso do seminário em sala de aula devido às particularidades que potencializam essas interações.

No momento do planejamento, o professor deve selecionar atividades que possibilitem aos alunos o uso de ferramentas e saberes que eles já possuem, dando-lhes condições para que consigam resolvê-las, seja sozinho ou com ajuda de um colega do grupo. Por exemplo, ao selecionar e sortear o tema da equipe, o professor pode passar um pequeno questionário sobre o tema sorteado para a equipe com algumas informações já conhecidas por eles, mas que nem todos conseguem responder sozinhos. Assim, a própria atividade proposta favorece a interação entre os educandos, uma vez que, em cada grupo terá um ou mais alunos que já viram ou estudaram algo sobre o assunto e poderão ajudar os demais na resolução do problema ou na elucidação da questão. É preciso que o professor assegure que as ferramentas necessárias para a realização das atividades já tenham sido trabalhadas em outros momentos em sala de aula e que nos grupos, os estudantes possam reunir os conhecimentos que já sabem, interagindo entre si e realizar debates. Destacamos que metodologicamente, é fundamental que o professor, ao selecionar os conteúdos deve disponibilizar para as equipes atividades que façam com que os conteúdos explorem competências e habilidades primordiais para a inclusão na sociedade atual. Para sustentar o que expomos, Rego (1995) destaca a importância da construção de conhecimentos partilhados e estruturados na teoria Sociointeracionista, ela salienta que: "(...) na perspectiva de Vygotsky, construir conhecimentos implica numa ação partilhada, já que é através dos outros que as relações entre sujeito e objeto de conhecimento são estabelecidas" (REGO, 1995, p. 110).

Além do planejamento, outro fator de grande importância que o professor deve se atentar na organização das equipes, quanto mais heterogêneas possíveis, melhor, desse modo, apoiada na teoria de Vygotsky. Rego (1995) destaca a ideia de quanto maior for a disparidade entre os alunos, maior será a riqueza de interações, nesse sentido, melhores serão os

resultados de aprendizagem dos alunos tanto dos que apresentam certas dificuldades como também dos que já possuem habilidades em fazê-las só. Entendemos que a partir do momento em que já temos o conhecimento de um determinado assunto e ter que explicá-lo para outra pessoa, é necessário fazer uma reestruturação de nossas ideias a fim de organizar nossa fala. Dessa forma, estamos estabelecendo uma conexão que irá melhorar nosso aprendizado, assim, aprendemos e sabemos explicar. Afinal, quando trabalhamos com a heterogeneidade entre os alunos, estamos favorecendo a sua aprendizagem? Para Rego (1995)

A heterogeneidade, característica presente em qualquer grupo humano, passa a ser vista como fator imprescindível para as interações na sala de aula. Os diferentes ritmos, comportamentos, experiências, trajetórias pessoais, contextos familiares, valores e níveis de conhecimentos de cada criança e do professor imprimem ao cotidiano escolar a possibilidade de troca de repertório, de visões de mundo, confronto, ajuda mútua e consequente ampliação das capacidades individuais. (REGO, 1995, p. 110)

Mediante a proposta apresentada pelos professores, os grupos já formados receberão as propostas para serem discutidas entre seus membros, de maneira que os alunos com mais experiências irão ajudar os outros com mais dificuldades com o objetivo de desenvolver sua aprendizagem, ou seja, ao realizarem os debates, estarão trocando diferentes pontos de vista sobre o assunto. Dessa forma, quando usamos a argumentação e a explicação, passamos a aprender mais. Partindo da ideia de que todos os alunos podem aprender, de modo que as diversidades sejam respeitadas, estamos oferecendo as condições necessárias para que todos tenham o mesmo acesso a aprendizagem, dando oportunidade aos alunos que possuem um pouco mais de dificuldades possam aprender através da pluralidade de interações que irão acontecer durante o seminário.

Além do planejamento e heterogeneidade, outro fator muito importante que irá contribuir para que nossa proposta de usar o seminário na sala de aula tenha êxito, é a escolha de um líder para cada grupo, esse líder deve ser aquele aluno que possui habilidades de comandar a equipe. É ele que vai coordenar as ações com o objetivo de propiciar interações entre todos. Na escolha do guia, ele deverá saber que uma de suas responsabilidades será a organização interna do grupo, evitando ações que possam prejudicar o andamento das atividades. Assim, estamos oferecendo condições para que surgimento de um ambiente que propicie aos alunos a interatividade, garantindo a realização da proposta e proporcionando a todos os estudantes uma participação seja ativa. Outra importante atribuição que o líder do grupo deve ter é o de motivar os membros da equipe, ajuda-los na compreensão das atividades propostas e as dúvidas quanto aos conteúdos, ministrar de forma responsável, o tempo que lhe

foi destinado e proporcionar o respeito mútuo, durante divergências de opiniões. Nesse momento, o professor deve ser consultado para o esclarecimento de dúvidas. Assim, por exemplo, se em uma determinada atividade voltada ao ensino de Física, os alunos começarem a discutir os assuntos pertinentes da temática, o líder perceber que algum aluno está com dificuldades de entender, ele deve se propor a ajudar. Dessa forma, compartilhar de seu conhecimento por meio da interação, e consequentemente, amadurecer a ZDP e se chegar à NDR, que segundo Vygotsky (1984) "(...) aquilo que é zona de desenvolvimento proximal hoje, será nível de desenvolvimento real amanhã (...)" Assim, mediante o líder, o ambiente e com a cooperação dos companheiros de grupo, será possível uma incorporação dos assuntos, que segundo o autor, uma vez internalizados, passam a ser uma conquista pessoal em seu desenvolvimento cognitivo.

2.3. A história das equações nos livros didáticos

O ser humano é o autor da própria história, ainda no período pré-histórico, ele tentou registrar sua caminhada através de imagens ou símbolos, pois ainda não havia a escrita. Foi o período em que para a História, passamos da mentalidade *Neanderthal* a *Cro-magnon*, assim, o homem registrou sua trajetória em cavernas, árvores, ossos de baleia, cascos de tartaruga, bambu, até chegar a um período, ainda na antiguidade, começou a escrever em papiro⁶ ou em pergaminhos⁷. Hoje, o homem ainda continua a escrever como, por exemplo, em pedras, árvores ou na própria pele por meio de tatuagens, porém o meio mais popular que hoje marca a trajetória do homem nesse espaço terreno foi inventado 105 anos (d.C) na China, cujo crédito é dado a *Ts ai Lun*, que tinha o costume de usar um material derivado da seda para a escrita, passando a se chamar de "papel de seda". Tempos depois, os chineses passaram a utilizar outros meios para escrever, começando a experimentar também a fibra de celulose, conhecido hoje por papel (do latim *papyrus*), usado por nós para registrar nossas atividades de letramento e, principalmente para práticas educacionais. Hoje, já é possível ter acesso ao pensamento e a história escrita da humanidade através dos livros que desempenham um importante papel em nossa vida.

Segundo Mello Júnior (2000) *apud* Paiva (2009), "o livro como nós conhecemos hoje, surgiu no Ocidente por volta do Século II d.C., fruto de uma revolução que representou

_

⁶ Criada pelos egípcios foi o principal suporte da escrita na Antiguidade, consistia em uma folha usada para escrever e/ou pintar.

⁷ Pele de caprino ou ovino, preparada com alume, própria para nela se escrever.

a substituição do *Vólumen* pelo *Códex*". Com essa substituição, as escritas passaram a ser feitas em dois lados, o que permitiu que se pudesse agrupar uma maior quantidade de páginas em um só volume, isso facilitou a leitura para muitos da época, mas só foi a partir do século XV, quando o alemão Johannes Gutenberg inventou um tipo de tecnologia para a época que modificou a maneira europeia de se fazer livros. Esse foi o ponto de partida para a criação da imprensa. É dada também a Gutenberg, a autoria da invenção da prensa móvel que facilitou a reprodução de livros em série, de maneira ágil, antes copiado à mão. Isso acabou permitindo que a humanidade pudesse ter acesso à cultura letrada. Essa invenção foi uma das maiores descobertas já feitas pelo homem, sendo que seu poder de influência modificou as gerações futuras.

Segundo dados mais difundidos, o primeiro livro impresso da história, foi a Bíblia em 1455 por Gutenberg, que ficou conhecido como "Bíblia de Gutenberg." Esse foi um marco importante na história do livro que impulsionou os impressores alemães na produção e reprodução de livros na Europa. As gramáticas foram os primeiros livros didáticos propriamente ditos e data do final do século XVIII, já a primeira indicação de livro para o aluno, segundo Paiva (2009) "aconteceu em 1578, quando o Cardeal Bellarmine lançou uma gramática de hebraico para o aluno estudar sem a ajuda do professor". Desde então, essa aglomeração de papel escrito passou a fazer parte da nossa vida, tornando-se indispensável para a humanidade. Antes a raça humana utilizava as paredes de cavernas ou qualquer outro tipo de material para registrar sua passagem pela Terra, com o uso do papel para substituir tais suportes, tudo ficou mais simples e tornou-se um material de uso cotidiano com fácil comercialização, transformando de vez a indústria do livro que cresce a cada dia e tende a não parar, como é o caso dos livros didáticos distribuídos para as escolas públicas de todo Brasil.

Os livros didáticos para escolas públicas são distribuídos pelo Governo federal, por meio do Programa Nacional do Livro Didático (PNLD) e o Programa Nacional Biblioteca da Escola (PNBE). Esse programa visa distribuir gratuitamente obras didáticas, pedagógicas e literárias com a finalidade prática educativa. Os materiais são destinados a alunos e professores da rede pública de ensino. Foi no ano de 1938, durante o primeiro mandato de Getúlio Vargas por meio do Decreto-Lei nº 1.006, de 30/12/38, que o livro didático passou a circular pelo país, começando pelo ensino fundamental no ano de 1971. Em 1985, o programa passa por modificações, sendo uma delas a escolha, feita através do professor. Mas foi somente no ano de 2009, que o sistema passou a distribuir livros de Física para todas as escolas públicas do ensino médio por meio do Programa Nacional do Livro Didático para o

Ensino Médio (PNLEM), que destinou 11,2 milhões de exemplares para a utilização dos estudantes, a partir de 2010 e que se estende até os dias atuais.

No dia 02 de agosto de 2017, o Ministério da Educação (MEC) divulgou no Diário Oficial da União, o resultado final das coleções aprovadas pela avaliação pedagógica referente ao PNLD 2018. A relação das coleções aprovadas e publicadas no dia 17 de agosto de 2017, listam 12 registros de editoras que disponibilizaram seus materiais de Física no quais passaram pela avaliação pedagógica do MEC, como catalogamos na tabela abaixo.

Tabela 1. Obras disponíveis pelo PNLD para escolha dos professores

EDITORA	CÓDIGO	COLEÇÃO
Moderna	0200P18133	CONEXÕES COM A FÍSICA
Moderna	0188P18133	FÍSICA - CIÊNCIA E TECNOLOGIA
FTD	0129P18133	FÍSICA AULA POR AULA
FTD	0131P18133	FÍSICA
Editora Brasil	0167P18133	FÍSICA EM CONT EXTOS
Leya	0118P18133	FÍSICA: INTERAÇÃO E TECNOLOGIA
Editora Ática	0021P18133	FÍSICA
Editora Ática	0025P18133	COMPREENDENDO A FÍSICA
SM	0071P18133	SER PROTAGONISTA – FÍSICA
Saraiva Educação	0100P18133	FÍSICA PARA O ENSINO MÉDIO
Saraiva Educação	0101P18133	FÍSICA
Editora Scipione	0045P18133	FÍSICA: CONTEXTO & APLICAÇÕES

Fonte: MEC

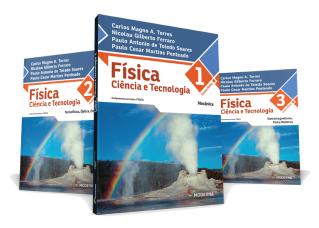
Após analisar algumas coleções que as editoras disponibilizaram para as escolas, cujo objetivo era promover a escolha dos melhores exemplares pelos professores, de maneira que pudessem analisar a opção mais adequada à realidade dos alunos para uso a partir de 2018. Faremos uma exposição de cada obra que chegou, para a análise e ao final, faremos as considerais finais acerca dos conteúdos, se são ou não referentes à história da Física. E ainda, se há menção a respeito da história das equações nos livros disponibilizados para o ensino de Física nos dias de hoje.

2.2.1. Editora Moderna

A seguir, é feito uma análise sobre a presença dos conteúdos referentes à história da Física e de suas Equações na obra *Conexões com a Física*, da Editora Moderna aprovadas pelo PNLD 2018. No guia 2018 (p. 91) especifica que a proposta da coleção é "apresentar

uma seleção de conteúdos de Física que seja relevante para uma formação geral do estudante, com vistas à continuidade de seus estudos em qualquer área de interesse".

Figura 4. Livro Conexões com a Física



Fonte: https://pnld2018.moderna.com.br/-/conexoes-com-a-fisica

A editora Moderna teve duas coleções aprovadas para o PNLD 2017 em que disponibiliza e-books e unidades físicas. O primeiro, com o título "Conexões com a Física", com três volumes disponíveis, sendo um para cada série de ensino. Nessa coleção, Glorinha Martini... [et al.] (2016), faz muitas referências da Física com o cotidiano, de maneira que apresenta fatos ocorridos durante as últimas décadas. Com as seções "ampliando sua leitura, trilhando o caminho das competências, já sabe responder, para saber e pesquisar em grupos", é notada uma aproximação da Física com o cotidiano do aluno, com textos referentes a situações corriqueiras e rápidos tópicos referentes à história, porém sem aprofundamentos, mas que incentiva o aluno a pesquisar. Vale ressaltar que nas páginas 147 e 154, respectivamente, do volume I, os autores destacam um pequeno histórico sobre a lei de Kepler e uma rápida visão sobre a Gravitação Universal. No volume II, da mesma coleção, não encontramos muito aprofundamento sobre tópicos históricos, enquanto que no volume III, já no final do livro, a partir da página 230, vemos um pouco da parte histórica da Física Moderna, que engloba a Teoria da Relatividade, Mecânica Quântica e um tópico bem interessante sobre a Física Contemporânea, atentando para questões recentes dessa ciência como Bósons de Higgs, ondas gravitacionais e a nano tecnologia no cotidiano. O livro é muito bom e sua proposta visa ajudar o professor a preparar o aluno a associar situações rotineiras, sendo o forte dessa coleção a preparação para vestibulares e ENEM, mas sem muito aprofundamento na história da Física.

Abaixo também, é feito uma análise sobre a disponibilidade de conteúdos referentes à história da Física e de suas Equações. Na obra *Física Ciência e Tecnologia*, da Editora Moderna, que também foi aprovada pelo PNLD 2018. O guia do livro didático 2018 (p. 86), especifica que a coleção "apresenta uma estrutura editorial bem organizada e funcional, baseada na articulação de um conjunto de conteúdos conceituais que buscam abordar situações conhecidas pelos estudantes".

Figura 5. Livro: Física Ciência e Tecnologia

Fonte: https://pnld2018.moderna.com.br/-/fisica-ciencia-e-tecnologia

A coleção "Física, Ciência e Tecnologia", no volume I, Carlos Magno A. Torres... [et al.] (2016) faz uma pequena introdução da evolução da Física, suas divisões, sua relação com outras ciências e questões cotidianas. É possível notar que existem pequenos tópicos que mencionam uma breve biografia dos cientistas como no volume I, página 49, onde se faz uma pequena referência à biografia de Galileu. Esses pequenos tópicos biográficos se estendem ao volume II com citações a Celsius, Fahrenheit e William Thompson. Nas páginas 15 e 16 dentre outras, sendo o destaque a rápida descrição sobre Gauss (pág. 251) e Halley (pág. 253). De forma igual, temos o volume III, que inicia com um rápido histórico da eletricidade sem muitas informações adicionais, em destaque está uma boa e breve referência sobre Nikola Tesla (pág. 83). Como na coleção anterior, esta apresenta seções como "o que diz a mídia, aplicações tecnológicas, você sabe por quê?" que associa a situações da realidade do aluno, sendo também o forte os exercícios de preparação para vestibular e ENEM, sem muito aprofundamento na história.

2.2.2. Editora FTD

A seguir, veremos um estudo sobre o que oferece a Editora FTD, no livro Física, a respeito da História da Física. O guia do PNLD 2018 (p. 76) descreve a obra como sendo uma coleção que "apresenta os conteúdos usualmente enfocados no Ensino Médio e alguns temas da Física Moderna, organizando a abordagem dos assuntos a partir de uma estrutura principal composta de textos e exercícios."

Figura 6. Livro: Física

Fonte: http://pnld.ftd.com.br/detalhes.php?id=17

A editora Frère Théophane Durand (FTD) também teve duas coleções aprovadas pelo MEC para o PNLD 2018, que foi disponibilizado em e-books e unidades físicas. A primeira em análise foi a "Física" de vários autores (2016), que já vínhamos trabalhando com ela há três anos. A versão atual não mudou muito em relação à anterior, mas destacamos no volume I um breve histórico nas páginas 216 e 217 sobre o "Principia", livro de autoria de Newton, e um pouco sobre a torre de Pisa (que serviu para Galileu fazer seu experimento) sobre o equilíbrio e resistência, encontrado nas páginas 242 e 243. Já no volume II, dessa coleção, temos uma breve contextualização histórica sobre o calor (na página 72) e sobre as máquinas a vapor nas páginas 122 e 123. O volume III inicia com uma rápida apresentação sobre a eletricidade com os estudos de William Gilbert e o experimento de Stephen Gray, enquanto que na página 62, mostra uma interessante carta de Benjamin Franklin ao membro da Royal Society Peter Collinson, já no final do livro, a partir da página 204, temos um pouco sobre o desenvolvimento da Física Moderna com a questão do éter e o experimento de Michelson e Morley. Podemos afirmar que essa coleção apresenta alguns tópicos sobre a história da Física, porém de maneira superficial. Assim como outras coleções, seu ponto forte também é preparar os alunos para vestibulares e ENEM.

Neste tópico, será feito uma inspeção sobre a história da Física e de suas Equações, no livro *Física aula por aula* da Editora FTD com capa no formato da imagem abaixo. O guia do livro 2018 (p. 70) destaca a coleção por apresentar textos e atividades propostas "pois são apresentados de forma a garantir espaço para a contextualização, com destaque para as possibilidades de articulação com aspectos do cotidiano, da História da Ciência e das tecnologias".

Figura 7. Livro: Física aula por aula

Fonte: http://pnld.ftd.com.br/detalhes.php?id=18

A coleção "Física, aula por aula", em seu volume I, o autor Barreto Filho (2016) inicia sua obra contextualizando a história da Física com o cotidiano e com os interessantes tópicos nas páginas 12 e 14. Respectivamente chamados de "Ciência e representação e ciência e interpretação" em que são ilustradas figuras rupestres, onde são analisadas a Ciência e a Arte por trás delas, enquanto que na outra mostra a imagem do deus greco-romano Netuno e a interpretação dos fenômenos naturais por trás da mitologia. Outro ponto que desperta a leitura é a explicação sobre o momento com Aristóteles e Buridan (p. 148). A obra conta com outras seções, sendo uma delas denominada *Pense além*, na qual aborda questões interdisciplinares. São destaques também as sugestões de livros, filmes e documentários com o intuito de o professor trabalhar os assuntos em paralelo. No volume II é abordada uma breve história das máquinas e no conteúdo de óptica são expostos rápidos registros e representações. Já no último volume dessa coleção, são feitas abordagens históricas, mas sem muito aprofundamento sobre o eletromagnetismo, como a experiência de Benjamin Flanklin (p. 74). A obra ainda conta com um capítulo de Física Moderna e Contemporânea que também faz menções rápidas da história da Relatividade (p. 200), o experimento de Michelson e Morley (p. 201), também sobre Mecânica Quântica (p. 218) e Física Nuclear (p. 229) com abordagens do desafio da Física no futuro. Em resumo, o livro é muito interessante por conta das abordagens descritas e também tenta manter a linhagem entre a preparação para o vestibular e ENEM, contudo ainda deixa a desejar no quesito história da Física.

2.2.3. Editora do Brasil

Temos a seguir, uma análise sobre o livro *Física em Contextos* da editora Brasil. Nela podemos perceber como estão distribuídos os conteúdos e como está a presença da história da Física nessa obra aprovada para o PNLD 2018. Segundo o guia do livro (p. 81), "esta obra aborda os conceitos centrais da Física de forma integrada a diferentes situações da vivência cotidiana, além de explorar o contexto histórico."

Figura 8. Livro: Física em contextos

Fonte: http://www.pnld2018.com.br/fisica

A Editora do Brasil, mesmo que já tenha mais de 70 anos no mercado desenvolvendo coleções didáticas, pela primeira vez tem uma obra de Física aprovada no PNLD. A editora disponibilizou unidades físicas e intitulou sua obra como *Física em contextos*, os autores Maurício Pietrocola [et al.] (2016) exploram no início do volume I, uma introdução às concepções históricas da evolução física, em que mostra os primeiros traços da Ciência na Pré-História, as Cosmologias da Antiguidade e Clássica e a evolução da história. As obras também contam com tópico "Pesquise, proponha e debata", em que recomenda ao professor encaminhar as atividades de acordo com alguns textos. Outro destaque com semelhança a esse tópico é o "investigue e pesquise" com destaque ao texto "A organização do Universo segundo Aristóteles" (pág. 22). Vale salientar que ao final desse volume temos um capítulo dedicado à astronomia com muitos tópicos históricos acerca da evolução da ciência e a física aristotélica, que por sinal traz muitas informações para o aluno. Essa

proposta de atividade se estende durante os outros dois volumes da coleção em que realçamos no volume II a história do princípio da conservação da energia, onde se faz um breve exórdio ao conceito de energia e suas transformações. No volume III, inicia-se com a história da eletricidade e mais adiante fala um pouco sobre os espectros da emissão de luz, verificada por Newton. Tiramos a conclusão de que, mesmo apresentando alguns tópicos pertinentes à história da Física, essa coleção procura aproximar o que é estudado em sala com a rotina diária, sem perder o foco da preparação para vestibulares e ENEM.

2.2.4. Editora LEYA

Neste tópico, exploraremos as obras da editora Leya, intitulado de *Física Interação e Tecnologia*. Abaixo, vemos a ilustração de suas capas, que também fazem parte das obras disponíveis pelo PNLD 2018. O guia do livro (p. 65) destaca que nessa coleção "Os assuntos estão organizados para que haja uma retomada das ideias, em diferentes níveis de aprofundamento, ao longo de todos os volumes."

FİST CA DUNGI TROGGG

Figura 9. Livro: Física Interação e Tecnologia

Fonte: http://ensinomedio2018.com.br/fisica/

A editora LEYA também teve uma coleção aprovada no PNLD 2018 para a disciplina de Física, tivemos acesso à unidade impressa e *ao e-book* dessa coleção com o título *Física – Interação e Tecnologia*, cujo autor Gonçalves Filho (2016) expõe no início do volume I, um marco histórico em que mostra a Física como uma Ciência em transformação. Ao final do exposto, o autor faz um paralelismo com a atualidade, o que destacamos nesse volume é o rápido histórico sobre as leis de Kepler (pág. 90). O autor ainda atenta para que o professor trabalhe com projetos com os alunos. Já o volume II, o ponto em que destacamos se

encontra na seção "Algo A+" em que se relata um pouco da experiência de Joule, que contribuiu para o conceito de conservação da energia (pág. 90) e no volume III não encontramos muita coisa relacionada à história, somente rápidas referências com uma imagem do físico, como por exemplo, Heinrich Lenz (pág. 161) e Thomas Kuhn (pág. 188). A conclusão é de que o livro apresenta muita informação com explanações de aplicação tecnológica e apresenta exercícios que prepara o aluno para o vestibular e ENEM, porém não encontramos muitas referências sobre o contexto histórico da Física.

2.2.5. Editora SM

Faremos abaixo um diagnóstico dos três volumes das obras disponibilizadas pela editora SM, que as intitulou de *Física, Ser Protagonista*. Essa obra também faz parte dos exemplares disponíveis pelo PNLD 2018, e que segundo o guia do livro didático (p. 50), a coleção contempla "A integração de conhecimentos gerais na perspectiva da interdisciplinaridade e da contextualização ocorre principalmente por meio dos diferentes textos disponíveis nos boxes e nas seções."

Figura 10. Livro: Física, Ser Protagonista

Fonte: http://pnld.edicoessm.com.br/colecao-Ser-Protagonista_Fisica

A editora SM também teve sua coleção aprovada no PNLD 2017, disponibilizando *e-books* e unidades físicas para análise com o tema "Ser Protagonista", os autores Válio... [et al] (2016) dispõe para os alunos um debate inicial a ser realizado em sala acerca de eventos ligados à ciência. No volume I, Fukui (2016) faz uma passagem das áreas da ciência e as grandes áreas da física e suas divisões são mostradas nas páginas 11 e 12. Temos a seção "Física tem história" em que um desses temas faz referência a um fato ocorrido no Nordeste, onde os estados como Paraíba, Pernambuco, Alagoas e Rio Grande do

Norte se revoltaram contra a utilização da nova medida do quilograma padrão (pág. 33). Ainda em relação à história da Ciência no conteúdo de Gravitação (pág. 191) faz uma mostra dos modelos cosmológicos de Aristóteles, Ptolomeu, Copérnico e as contribuições de Tycho Brahe, Johannes Kepler até Newton. Para o volume II de Válio (2016), destacamos duas curiosidades históricas; a primeira sobre a conservação dos alimentos em latas, não muito comum ainda para a época de Napoleão. Esse novo modo de armazenar os alimentos serviu para manter os soldados saciados (pág. 67), a segunda, na seção de ondas, faz referências à história do rádio e a contribuição do padre Roberto Landell de Moura (pág. 159). Por fim, o que o volume III da coleção nos oferece sobre a história da Física são as contribuições de Alessandro Volta com a invenção da pilha (pág. 43) e breves biografias de Maxwell (pág. 168). A conclusão sobre essa obra é de que a mesma tem seu foco em conceituações com aplicações de exercícios para os vestibulares e ENEM. Em relação à história da Física, assim como as demais, se resume a pequenas passagens biográficas com menção a sua invenção.

2.2.6. Editora Ática

A imagem abaixo mostra a capa de uma das coleções da editora Ática, cujo título é *Física*, e que faremos uma descrição acerca dos conteúdos sobre a história da Física e de suas Equações. Segundo o Guia do PNLD 2018 (p. 34), essa coleção está "organizada em torno dos temas tradicionalmente incluídos no programa de Física para o Ensino Médio, visando promover a compreensão tanto das interpretações físicas dos fenômenos como das conexões entre estes e os diversos campos do conhecimento."

Figura 11. Livro: Física

Fonte: Google imagens

Outra editora que também teve obras aprovadas no PNLD 2016, foi a Ática com duas coleções, também disponível em *e-books* e com unidades impressas. A primeira foi intitulado de *Física* do autor Guimarães (2016). Ele expõe uma grande quantidade de formulações matemáticas com deduções de várias equações, usadas habitualmente em nossas aulas. Em relação à história da Física, pouco encontramos sobre a mesma. No volume I, temos uma pequena descrição histórica sobre a Física Clássica e a Física Moderna. Também é apresentada uma rápida descrição sobre o cometa Halley (pág. 17) e a história da criação da universidade (pág. 19). No volume II, o autor expõe, na página 29, um pouco sobre a evolução do conceito de calor. Destacamos nesse volume na seção "em construção" uma abordagem biográfica sobre William Thomson (Lorde Kelvin), enquanto que no volume III destacamos a biografia de Robert Kircchoff, algo raro em livros didáticos. Concluímos que a coleção é ótima, porém nada mais em termos aprofundados da história foi diagnosticado, sendo o real objetivo dessa coleção por apresentar uma linguagem técnica muito alto como também preparar os estudantes para vestibulares e ENEM.

Temos abaixo a capa da segunda coleção disponível pela editora Ática, cujo título é *Compreendendo a Física*. De acordo com o Guia do PNLD2018 (p. 40), "caracteriza-se por apresentar um extenso conjunto de conteúdos desenvolvidos de forma conceitualmente adequada e com prioridade para o formalismo matemático." Veremos como a história da Física e de suas Equações são tratadas nesse Box.

Figura 12. Livro: Compreendendo a Física

Fonte: Google imagens

A segunda coleção dessa editora é "Compreendendo a Física" de Gaspar (2016). Em seu volume I, é apresentado as referências e as profecias dos povos antigos e ainda uma análise sobre as previsões científicas. Nessa abordagem, o autor cita a famosa frase "o sertão

virará praia e a praia virará sertão" escrita por Euclides da Cunha em *Os Sertões*, dessa forma, insulta-se o aluno a pensar: Qual a diferença entre a profecia popular e a profecia cientifica? Em relação ao contexto histórico, temos rápidas passagens sobre a máquina a vapor (pág. 238) e a Gravitação Universal (pág. 232). Quanto ao volume II, destacamos uma rápida passagem sobre a história da máquina a vapor (pág. 226), em que se faz referências a *eolípila* dispositivo inventado por Herão. No volume III desta coleção, colocamos como destaque as breves histórias do magnetismo (pág. 135), a Relatividade (pág. 221) e um pequeno retângulo com as breves biografias de Marie Curie (pág. 244) e Ernest Rutherfor (pág. 245). Poucas informações adicionais sobre a história da Física são encontradas, sendo que os livros muito bons, em termos técnicos e conteudistas com ênfase a preparar o educando para provas e exames.

2.2.7. Editora Saraiva

A figura 13 mostra a capa de uma das coleções disponibilizada pela editora Saraiva, com o título *Física*. O Guia do PNLD2018 (p. 60) caracteriza a obra com "estrutura nos assuntos da Física da forma tradicional que usualmente se encontra nas publicações didáticas para o Ensino Médio." Veremos abaixo sua relação com a história da Física e de suas Equações.

Figura 13. Livro: Física

Fonte: http://pnld.editorasaraiva.com.br/obra/fisica/

Para o PNLD 2018 a editora Saraiva está com duas coleções que foram disponibilizadas na versão física e por meio de *e-book*, a primeira coleção denominada de

"Física", Doca (2016) transcreve no volume I da mesma coleção, um pequeno quadrado com a biografia de Chritiaan Huygens, atribuindo a ele a equação da aceleração centrípeta (pág. 71), mas o destaque é na seção "ampliando olhar" onde faz-se uma referência de qual físico foi mais importante se Newton ou Einstein (pág. 85). O autor ainda expõe algumas reportagens como, por exemplo, o desastre do ônibus espacial Columbia, onde morreram sete tripulantes. No volume II, Villas Boas (2016), destaca na seção de mesmo nome a evolução das máquinas térmicas (pág. 95) e sobre o motor térmico de quatro tempos, máquina desenvolvida por Otto (pág. 97) e na seção "INTERSABERES" faz destaque ao cometa Halley, descoberto pelo físico britânico Edmond Halley, na mesma seção, o autor diferencia cometas, meteoros e asteroides (pág. 267-268). No volume III, Biscuola (2016) em uma de suas seções de mesmo nome dos volumes anteriores, destaca um pouco da biografia de Benjamin Franklin com a fundação da universidade de Nova York (pág. 11) e a invenção da pilha elétrica por Alessandro Volta (pág. 55). Realçamos os escritos da página 213 que mostra a invenção do motor elétrico por Michael Faraday como uma entre as 100 invenções que mudaram o mundo. De modo geral, os livros dessa coleção tem um alto nível técnico com muitas deduções de equações, neles também contam bastantes exercícios para prática dos alunos, visando ENEM e vestibulares. Não encontramos algo a mais sobre a história da Física.

Na figura 14, a coleção *Física para o ensino médio*, segunda obra da editora Saraiva. No guia do PNLD 2018 (pág. 55) expõe que "A História da Ciência aparece de forma integrada ao conjunto da obra, possibilitando uma compreensão do processo de construção do conhecimento científico." Veremos se a análise que foi feita sobre a obra, se a história da Física e de suas Equações condiz um pouco com o que nos mostra o guia.

Figura 14. Livro: Física para o ensino médio

Fonte: http://pnld.editorasaraiva.com.br/obra/fisica-para-o-ensino-medio/

A outra coleção dessa editora chamada de Física para o ensino médio de Yamamoto (2016) faz no volume I, uma breve exposição sobre a evolução das leis de Newton (uma leve curiosidade) (pág. 137) e no conteúdo de Gravitação a construção de um modelo para representar o mundo (pág. 236). No volume II, o autor faz relações da Física com o cotidiano, destaque para a seção "Física na História" com uma rápida descrição da contribuição de Von Mayer para a Termodinâmica (pág. 97) e sobre as primeiras lentes construídas em 1849, pelo arqueólogo britânico John Layard (pág. 182). O volume III traz um pouco da história da eletricidade. Na seção "Outras palavras", começando com o versorium de William Gilbert, que consistia em uma agulha metálica apoiada sobre um estilete como também sua obra "De Magnete" (pág. 24-25). Na mesma seção, na página 65, o autor expõe a experiência do americano Robert Millikan sobre o elétron que lhe rendeu o prêmio Nobel de 1923. Destacamos dois pontos marcantes, o primeiro a história da energia no Brasil (pág. 164) e a guerra das correntes que tiveram como protagonistas, Tesla e Edson (pág. 226). A avaliação dessa coleção é de que ela ajuda o professor com exercícios (ENEM e vestibulares) e analogias com o cotidiano, em relação aos aspectos históricos, eles se resumem a pequenas passagens com algumas curiosidades.

2.2.8. Editora Scipione

A figura 15 é da coleção *Física: Contextos e Aplicações* da editora Scipione, logo mais, será feita uma descrição da obra e sua relação com os conteúdos de história da Física e de suas Equações. O guia do PNLD 2018 (p. 45). Nessa coleção, diz respeito que a mesma traz elementos da História, da Ciência e que contribuem para reconhecer a Física como um

conjunto de conhecimentos socialmente produzidos. "O papel da história não se constitui, ao longo do texto, em um aspecto que desperte a atenção, quer do ponto de vista da sua frequência, quer do ponto de vista da sua natureza."

Figura 15. Livro: Física: Contextos e Aplicações

Fonte: Google Imagens

A editora Scipione foi mais uma dentre as oito editoras que tiveram obras aprovadas no PNLD 2018. Com a coleção Física: Contexto & Aplicações, Luz (2016) relata no volume I, a origem do sistema métrico (pág. 18) com Lorde Kelvin, salientando a importância desse novo método. Temos como destaques nesse volume, na seção "Física em contexto", uma breve história de Galileu e a mudança de visão sobre o universo (pág. 54) e a rápida biografia de Isaac Newton com suas invenções como, por exemplo, o Binômio de Newton, as bases do cálculo diferencial, fenômenos ópticos e a gravitação (pág. 101). No volume II, realçamos primeiro a história da construção dos espelhos por Arquimedes para proteger sua cidade Siracusa de invasores (pág. 144), e segundo, sobre o pêndulo de Foucault (pág. 195), uma experiência que o mesmo utilizou para provar que a Terra está em rotação. No volume III, frisamos três pontos principais, o primeiro é o reconhecimento de Napoleão Bonaparte ao Conde Alessandro Volta (pág. 69), condecorando-o com medalhas por seus méritos. Uma delas é a invenção da pilha, o segundo sobre o americano Ernest Orlando Lawrence (pág. 169), tendo sua colaboração para a criação dos cíclotrons (um tipo de acelerador de partículas) e na parte que faz referência à Física Contemporânea, o autor relembra a 5^a conferência de 1927 em Solvay na Bélgica, em que vários cientistas se reuniram para debater os avanços fundamentais para a Física Quântica e destaca a importância do trabalho em equipe para o progresso da Ciência. Concluímos que ao elaborar essa coleção, os autores tiveram a intenção de preparar os alunos para o vestibular e o ENEM pelo número de exercícios disponíveis para o professor trabalhar com os alunos, porém os contextos históricos da Física que são abordados na coleção são de caráter informativo com breves biografias dos físicos.

Concluímos, após análises minuciosas que as coleções didáticas do PNLD 2017 apresentam uma resumida contextualização histórica da Física, com fatos rápidos e resumidos da biografia dos físicos (Newton, Einstein, Arquimedes, etc.), como datas e o que foram descobertos por eles, sendo que algumas ainda apresentam uma visão distorcida da história, como se a Ciência fosse feita por fatos isolados e por um resumido grupo de personagens. Quanto à história de alguma equação, não observamos qualquer indício entre as doze coleções averiguadas. Porém vale ressaltar alguns fatos curiosos e isolados que citamos na análise das obras, como por exemplo, a conservação de alimentos em latas para o exército de Napoleão e a construção da primeira lente por John Layard. Entretanto, algumas informações sobre os experimentos realizados são recontados de forma acabada como se uma única tentativa da experimentação feita, já tivesse dado os resultados esperados sem levantar ainda as dúvidas e as motivações que o personagem levou para estabelecer a ideia. Portanto, nossos livros estão indo ao encontro com a matemática, com muita exposição de fórmulas e exercícios com aplicações da mesma, deve-se ir ao encontro com a proposta de deixar o aluno desenvolver seu raciocínio com a ideia de fazê-lo pensar como resolveria tal situação para a época.

3. METODOLOGIA E APLICAÇÃO DO PRODUTO

O produto final desta dissertação consiste de um material didático com sugestões de temas e orientações de preparação de um seminário com foco na história da Física e de suas equações. Esse material visa auxiliar o professor com a contextualização histórica durante as aulas, permitindo aos alunos uma compreensão do pensamento científico da época. O processo de construção, aplicação e coleta de dados de nossa proposta se deu da seguinte maneira: 1. Escolha dos temas dos seminários; 2. Construção do material didático; 3. Aplicação do produto educacional e 4. Coleta de dados.

3.1. A escolha dos temas dos seminários

De acordo com as observações feitas nos livros didáticos de Física que são adotados pelas escolas públicas brasileiras, os autores privilegiam muito o uso de equações, dando ênfase à resolução de exercícios com aplicações de fórmulas e o uso da Matemática. Nesse sentido, tentamos conciliar a parte teórica com a história das equações com a parte prática e suas aplicações, o objetivo é compreender o significado físico dessas expressões.

Os temas escolhidos para serem debatidos em seminários seguiu uma sequência estrutural histórica das equações, começando com a Cinemática e a Equação da Velocidade, seguindo para a Gravitação Universal, passando pela Termodinâmica, indo ao encontro das Equações de Maxwell e concluindo com a Teoria da Relatividade. Outro fator que foi fundamental para a escolha desses temas, foi a falta de informações de caráter histórico dos temas, não repassados nos livros didáticos, sendo importante para que os alunos conheçam a história da construção do pensamento por trás das equações.

3.2. A construção do material didático

Após consultas à internet e em livros didáticos a respeito da história da Física, encontramos vários trabalhos científicos e dissertações a respeito dos temas como também alguns pequenos Box nos livros didáticos sobre dados biográficos de alguns físicos ou curiosidades sobre experimentos. No entanto, nada a respeito do contexto histórico das equações, seus criadores e a forma de pensamento que o mesmo levou para a construção da ideia. Nossa base de apoio para a montagem do produto educacional foram os livros 17 Equações que mudaram o mundo de Ian Stewart, As grandes equações: A história das

fórmulas matemáticas mais importantes e os cientistas que as criaram de Robert P. Crease e Da Physis à Física de José Plínio Baptista. Esses livros foram as bases do breve histórico da Física e de suas equações contida em nosso produto educacional. Procurou-se dar ênfase ao contexto histórico vivido para a época pelos cientistas em cada tópico, sendo essencial a percepção dos impactos produzidos por cada equação, após a sua formulação, como por exemplo, o que foi possível observar após a formação de uma equação para a velocidade, ou ainda, o que a gravitação de Newton tornou possível para os dias de hoje? Dentre essas e muitas outras deduções que os alunos terão ao longo do estudo do material, os principais objetivos é saber a sequência do pensamento lógico que determinou o resultado final e compreender o significado físico que cada equação envolvida nos temas quer nos repassar.

3.3. Coleta de dados

O produto educacional foi aplicado na Escola de Ensino Médio Vilebaldo Aguiar (SIGE: 23015594), essa escola pertence à rede estadual de ensino da cidade de Coreaú, localizada no Norte do estado do Ceará. A escola oferece à comunidade as três séries do Ensino Médio e a Educação de Jovens e Adultos (EJA). Também são oferecidos aos alunos, cursos de práticas laboratoriais, práticas de informática e acompanhamentos do Programa Institucional de Bolsa de Iniciação à Docência — PIBID. O funcionamento se dá em três turnos, distribuídos na escola sede e em três anexos, no ano de 2017 a escola teve cerca de 1.020 alunos, segundo os dados do Sistema Integrado de Gestão Escolar (SIGE/ESCOLA), sendo que a média de idade está entre 15 e 16 anos.

Para a aplicação do produto educacional, foi feito um sorteio para escolher três turmas do turno da manhã, levando em consideração a disponibilidade dos alunos, pois muitos se deslocam da zona rural para a sede por meio de coletivos disponibilizados pela prefeitura. As turmas sorteadas foram todas do turno da manhã, tendo o 1º ano A, 39 alunos, o 2º A 38 alunos e o 3º A com 27 alunos. O primeiro passo após a escolha das turmas para a aplicação, foi selecionar, dentre os alunos da sala, os líderes das equipes, aqueles que irão estabelecer as estratégias de suas equipes para o seminário. Seguindo a teoria de Vygotsky, o próximo passo foi organizar os grupos de forma heterogênea, possibilitando a troca de ideias por meio da interação, assim, esperamos como resultados uma aprendizagem significativa em Física. Utilizamos para a formação de cada grupo, um aplicativo de nome "Sorteio Rápido" ⁸,

_

⁸ Disponível em https://play.google.com/store/apps/details?id=br.com.kurticao.sorteiorapido&hl=pt

disponível para download no *Google Play*, com ele é possível escolher a numeração dos alunos com repetição ou sem repetição, nesse caso, como é para a formação dos grupos, escolhemos a opção sem repetição, garantindo dessa forma uma escolha aleatória. Após o ocorrido, estabelecemos os dias de apresentação da primeira equipe até a última, sendo que ficaram definidos, respectivamente para os dias 28 de agosto, 04 de setembro, 11 de setembro, 18 de setembro e 25 de setembro para as turmas do 1° A e 3° A e para o 2° A os dias 29 de agosto, 05 de setembro, 12 de setembro, 19 de setembro e 26 de setembro. Dessa maneira, a primeira equipe a se apresentar terá cerca de vinte dias, tempo suficiente para ler o material repassado pelo professor, fazer pesquisa de campo e por fim preparar a exposição.

Após o sorteio dos grupos das turmas já citadas, foi explicado toda a estrutura de como é a apresentação de um seminário e marcamos para o contra turno uma reunião com o líder de cada grupo para fins de esclarecimentos, como por exemplo, o que irão precisar para a exposição, qual o material a ser consultado e também para acompanhar o passo a passo de como eles irão preparar a estrutura da apresentação, com isso fechamos a reunião. Para fins de coleta de dados após uma semana do sorteio, foi aplicado nas turmas em questão, um préteste, que visa saber quais os conhecimentos prévios que os alunos de cada grupo possuem acerca dos assuntos selecionados para as apresentações. O teste aplicado para todas as turmas que irão apresentar os seminários se encontram no final do produto educacional destinado ao professor, ele contém dez perguntas, todas de caráter teórico com quatro opções para cada assunto, sendo que só uma alternativa é correta. Por exemplo, teremos dez perguntas; seminário I que irá contar a respeito do surgimento da Cinemática e da equação da velocidade e assim segue para os demais.

A imagem 16 mostra os alunos do 1° A, discutindo as questões do teste antes da apresentação dos seminários. Este momento os alunos se reuniram em grupos e puderam debater as perguntas referentes a seus temas.

Figura 16. Grupo de alunos do 1ºA debatendo o teste diagnóstico

Fonte: próprio autor

A tabela abaixo expõe os resultados referentes ao total de acertos e a porcentagem que cada equipe obteve no primeiro teste diagnóstico sobre os temas de seus seminários.

Tabela 2 - Referente aos alunos do 1° A, turno manhã, total de 39 alunos.

RENDIMENTO DO DIAGNÓSTICO DAS EQUIPES DO 1°A					
GRUPOS	QUANTIDADE DE QUESTÕES	ACERTOS	PORCENTAGEM		
EQUIPE 01 SEMINÁRIO IV	10	7,0	70%		
EQUIPE 02 SEMINÁRIO III	10	4,0	40%		
EQUIPE 03 SEMINÁRIO V	10	6,0	60%		
EQUIPE 04 SEMINÁRIO II	10	2,0	20%		
EQUIPE 05 SEMINÁRIO I	10	10	100%		

Fonte: O próprio autor

De acordo com as informações colhidas no primeiro momento da aplicação do pré-teste, podemos analisar os resultados da turma do 1° A manhã, através dos dados expostos

na tabela I. A equipe 01, que ficou responsável pelo seminário IV, obteve um percentual de 70% das questões, acertando perguntas consideradas simples como as que falam sobre ondas eletromagnéticas, sobre Michael Faraday e Maxwell. Também houve acertos sobre as questões de porte médio como a junção das leis de Ámpere, Gauss e Faraday. De porte difícil como a interpretação de equações ainda não estudadas, os resultados alcançados é sinal de que já houve encontros entre os membros para debater o assunto. A equipe 02, responsável pelo seminário III, obteve 40% de acertos, o que podemos destacar questões consideradas simples como as que fazem referência à equação de Clayperon, a máquina a vapor e o ciclo de Carnot. Em conversa com um membro dessa equipe, o mesmo disse que ainda não tinha acontecido encontros para estudos do tema, isso talvez explique o resultado razoável. Já a equipe 03, que ficou incumbida do seminário V, acertou questões consideradas simples como a relatividade de Galileu e sobre a tentativa dos cientistas de acharem o éter, porém conseguiram acertar questões de médio porte como as que fazem referências a equação da equivalência e a relatividade de Einstein. A equipe já havia feito um encontro para estudo, mas nem todos participaram, o que não interferiu em uma compreensão do assunto, resultando em 60% de rendimento. A equipe 04, que ficou responsável pelo seminário II, teve um desempenho de 20%, acertando as questões consideradas simples sobre as Leis de Kepler e sobre o pensamento do movimento dos planetas antes de Kepler desenvolver suas leis. O grupo revelou que houve um encontro para estudo, contudo os membros ficaram dispersos e não houve aproveitamento. Em relação à equipe 05, responsável pelo seminário I, o rendimento obtido foi o máximo, ou seja, 100% de acerto, sinal de um estudo bem avançado entre seus membros, pois a mesma será a primeira a fazer a exposição.

A imagem abaixo mostra a organização dos grupos do 2° A, no momento em que estavam debatendo seus temas através da análise de questões referentes aos seus conteúdos. Este foi um momento rico em aprendizagem, pois podemos ver os alunos interagindo entre si e com o professor na busca de soluções para os problemas.

Figura 17. Grupo de alunos do 2ºA debatendo o teste diagnóstico

Fonte: próprio autor

A Tabela 3, exposta abaixo, mostra os resultados referentes à porcentagem e ao total de acertos que cada equipe obteve no primeiro teste diagnóstico sobre os temas de seus seminários.

Tabela 3 – Referente aos alunos do 2ª A, turno manhã, total de 38 alunos.

RENDIMENTO DO DIAGNÓSTICO DAS EQUIPES DO 2°A					
GRUPOS	QUANTIDADE DE QUESTÕES	ACERTOS	PORCENTAGEM		
EQUIPE 01 SEMINÁRIO V	10	3,0	30%		
EQUIPE 02 SEMINÁRIO II	10	3,0	30%		
EQUIPE 03 SEMINÁRIO IV	10	3,0	30%		
EQUIPE 04 SEMINÁRIO I	10	4,0	40%		
EQUIPE 05 SEMINÁRIO III	10	4,0	40%		

Fonte: Próprio autor

Na Tabela II estão expostos os resultados referentes à turma do 2° A manhã, o que podemos perceber ainda é o baixo percentual de acertos pelos grupos, vamos às analises: A equipe 01, que ficou responsável pelo seminário V, obteve 30% de acertos em que podemos destacar questões de nível mediano para a turma como, por exemplo, as possíveis transformações da equação da equivalência, sobre a relatividade de Einstein e o princípio da relatividade de Galileu. A equipe 02, que se responsabilizou em apresentar o seminário II, alcançou um percentual de 30%, sendo que o grupo acertou questões de caráter simples como a que faz referência às leis de Kepler e sobre o pensamento das ideias do movimento dos planetas por um grupo de cientistas antes dele. A equipe 03, que irá apresentar o seminário IV, também acertou 30% do total de questões, sendo que os problemas acertados foram considerados simples, em que podemos citar os aparelhos que usam ondas eletromagnéticas e sobre Michael Faraday. O seminário I, apresentado pela equipe 04, o grupo teve um rendimento de 40%, acertando questões simples como a formalização da cinemática e outras um pouco mais complexas como a experiência feita pelos antigos para determinar a velocidade dos corpos ou ainda os métodos utilizados por grupos de estudos para determinala. A equipe 05, que irá apresentar o seminário III, também teve um percentual de acerto de 40%, esses acertos estão relacionados a questões simples como as leis dos gases e o ciclo de Carnot. Após ver os baixos índices de acertos disponíveis no Quadro II entre as equipes dessa turma, os líderes relataram que ainda não haviam realizado encontros para estudos sobre os temas e os acertos referentes às questões são por conta de o professor já ter mencionado algo em sala ou por terem lido alguma coisa parecido sobre o tema.

Na figura 18 temos os alunos do 3° A em debate entre os membros do grupo, em busca de solucionar o teste referente a seus temas.

Figura 18. Grupo de alunos do 3ºA debatendo o pré-teste

Fonte: próprio autor

Estão expostos na Tabela 4 os resultados referentes aos acertos e a porcentagem alcançada por cada equipe no primeiro teste diagnóstico sobre os temas de seus seminários.

Tabela 4. Referente aos alunos do 3° A, turno manhã com o total de 27 alunos.

RENDIMENTO DO DIAGNÓSTICO DAS EQUIPES DO 3°A							
GRUPOS	QUANTIDADE DE QUESTÕES	ACERTOS	PORCENTAGEM				
EQUIPE 01 SEMINÁRIO V	10	03	30%				
EQUIPE 02 SEMINÁRIO II	10	05	50%				
EQUIPE 03 SEMINÁRIO IV	10	7,2	72%				
EQUIPE 04 SEMINÁRIO I	10	09	90%				
EQUIPE 05 SEMINÁRIO III	10	01	10%				

Fonte: próprio autor

A Tabela III mostra os resultados referentes à turma do 3° A manhã, observamos que a equipe 01, responsável pelo seminário V, o percentual de acertos desse grupo ficou em 30%, sendo que as questões acertadas foram consideradas simples como a de interpretação da

equação da equivalência e a Relatividade de Einstein, outra de caráter médio é sobre a dedução das equações relativísticas. O líder da equipe revelou que já havia realizado um encontro com seus membros, porém sem muito aprofundamento. A equipe 02, que responde pelo seminário II, acertou um percentual de 50%, em análise dos parâmetros acertados pelo grupo estão questões simples como as que envolvem as leis de Kepler e a lei de Hooke, e outras consideradas médias como as obras de Nicolau Copérnico e William Gilbert. Após o resultado, conversamos com os membros da equipe que disseram já ter havido um estudo sobre o tema, porém sem aprofundamento e que irão começar a se reunir mais para estudarem os conteúdos.

A equipe 03, que ficou incumbida de apresentar o seminário IV, acabou obtendo 72% das questões disponíveis, primeiro vamos explicar os 2%: como a última questão é de caráter descritivo, o grupo acabou acertando o nome de uma das equações de Maxwell, o restante do percentual se distribui entre questões simples como as que falam dos aparelhos que utilizam ondas eletromagnéticas, ou ainda sobre a vida de Faraday e Maxwell. Também teve acertos entre questões de caráter difícil como entender o significado de algumas equações diferenciais do magnetismo. O líder revelou que já havia discutido sobre o tema com os membros da equipe e que ele leu o material que o professor disponibilizou para estudo. A equipe 04, responsável pelo seminário I, obteve um ótimo percentual de acerto, atingindo 90%, o grupo acertou questões consideradas simples como os métodos utilizados para encontrar a velocidade, as de caráter médio como os personagens responsáveis pela formulação da equação da velocidade e de porte difícil que é o caso das correntes cientificas para construção da cinemática. A líder do grupo disse que já fez alguns encontros para definir as estratégias do seminário e também para estudar o tema para exposição, isso talvez explique o ótimo número de acerto sobre as questões.

Por fim, os dados da equipe 05, que ficou com o seminário III, não se saíram muito bem, teve um percentual de acerto de 10%, acertando apenas a questão que envolve a equação dos gases. Em conversa com o líder da equipe, foi revelado que ele tentou reunir a equipe, porém sem muito êxito, mas que irá se esforçar para melhorar os conhecimentos sobre o assunto para fazer uma boa exposição e entender mais sobre a Física.

Para iniciar a atividade, foi um pouco complicado por conta da concentração dos alunos, apesar de já terem trabalhado em grupos, ainda não estavam habituados a trabalhar de forma coletiva através do método interacionista. Com o passar da aula, os alunos começaram a conversar entre si, foi quando os deixei mais à vontade para concluir esse primeiro momento

em sala de aula. Ainda realizamos um teste de sondagem com professores e alunos da mesma escola, em que visa saber sobre os conhecimentos dos entrevistados acerca da história da Física, a importância de repassar aos alunos fatos marcantes sobre o desenvolvimento das equações e se os livros didáticos oferecem suporte para esse contexto. Diante do que for apresentado no quadro de respostas, podemos identificar os pontos que poderão ser melhorados na disciplina, como por exemplo, se os artifícios matemáticos são suficientes para aprender Física ou se seria necessário uni-la aos contextos históricos. Vejamos a sondagem.

3.4. Sondagem: O que dizem os professores e alunos sobre a História da Física

Em meio ao processo de realização do seminário no período indicado, procuramos saber através de um teste de sondagem entre os alunos e os professores de Física da escola Vilebaldo Aguiar, acerca de seus conhecimentos sobre a história da Física, no caso para os professores, se trabalham a história da Física em sala de aula e se os livros didáticos trazem essa contextualização. Ainda coletamos informações de quinze alunos e três professores que lecionam na referida escola. A identificação dos professores se dará por professor I, professor II e professor III, e de maneira análoga, também será a identificação dos alunos. O professor I tem formação em licenciatura em Física, é concursado da rede estadual de ensino e atualmente leciona as disciplinas de Física e Química para as turmas de 1°, 2° e 3° ano do ensino médio. O professor II é licenciado em Química também concursado da rede municipal de ensino e leciona as disciplinas de Física e Química. O professor III tem licenciatura em Matemática, é concursado da rede municipal de ensino e leciona as disciplinas de Física e Matemática. Vejamos as respostas proferidas pelos professores no questionário abaixo.

Tabela 5. Teste de sondagem dos professores

QUESTÕES	PROFESSOR I (RESPOSTAS)	PROFESSOR II (RESPOSTAS)	PROFESSOR III (RESPOSTAS)
01. Você conhece a história da física?	Sim	Não	Sim, alguns fatos históricos
02. Qual fato histórico mais importante da história da física você conhece?	Os conhecimentos e novas conceituações da transição e amplificação da Física Clássica para a Física Moderna	Domínio da eletricidade	A descoberta da gravidade, ou seja, força gravitacional

03. Você costuma repassar alguma contextualização histórica da física durante os conteúdos?	Sim	Sim	Sim
04. Você sabe qual foi à origem da cinemática? E da equação da velocidade?	Sim e Sim	Não e Não	Sim
05. Quais seus conhecimentos históricos sobre a equação da Gravitação Universal?	Sim. Lei que rege a atração mutua dos corpos na razão direta das massas pelo inverso do quadrado da distância.	Nada	Sendo a gravitação uma força que atrai, age, sobre todos os objetos. Portanto, a equação vem a calcular essa força.
06. Você conhece o conto em que fala que uma maça caiu na cabeça de Newton e a partir desse ponto ele desenvolveu a equação da gravitação? Você acha que esse conto é verdade ou mentira?	Sim, Verdade	Sim e Sim	Sim
07. Você conhece a história da segunda lei da Termodinâmica e suas aplicações?	Sim e Sim	Não e Sim	Sim
08. Você conhece a história das equações de Maxwell e suas aplicações?	Sim	Sim	Não
09. Você conhece a história da Equação E = mc² e suas aplicações?	Sim	Sim	Sim
10. Você acha que o livro didático traz as informações necessárias sobre a história da física?	Não Fonte: Própri	Vago	Nem sempre

Fonte: Próprio autor

O quadro acima nos mostra uma situação um pouco preocupante em relação aos professores que lecionam Física nessa escola, mostrando o que as pesquisas já mostradas neste trabalho revelam sobre o ensino de Física, ou seja, quem está ocupando as vagas nas escolas públicas são professores que não tem formação especifica na disciplina. Nessa

amostragem dos três docentes entrevistados, somente o professor I possui formação especifica na disciplina, e este, apesar de responder que conhece superficialmente a história da Física, ainda carece de informações precisas sobre determinados assuntos como a parte de Mecânica e as Equações de Maxwell. Diferentemente, o professor II que não possui formação na disciplina disse não se interessar muito sobre os contextos históricos da Física, por isso disse não conhecer as informações que o questionário indagou. Ele ainda respondeu que quando vai faz referências sobre os processos históricos, o faz de forma rápida para não perder muito tempo devido ao fato de usar a Matemática para a resolução de problemas. Em relação ao conhecimento acerca do contexto histórico da Física e trabalhar com ela em sala de aula, o professor III que tem graduação em matemática, mas é professor de Física das três séries do ensino médio, afirmou conhecer alguns fatos e que trabalha alguns com os alunos, porém o foco principal é a preparação dos alunos em resolver problemas que irão encontrar nos vestibulares.

É consensual entre os professores pesquisados que o livro didático não oferece suporte suficiente no quesito contexto histórico, sendo que a maioria se resume a pequenas biografias disponíveis em caixas textos ou com breves informações sobre assunto. Assim, concluímos que após ouvir os professores, que são responsáveis pela disciplina de Física da referida escola, concentram a maior parte do tempo de suas atividades na resolução de problemas, deixando a parte essencial do estudo da Física em segundo plano, que é o raciocínio para a construção das ideias a partir de sua gênese.

O questionário para os alunos também seguiu o mesmo parâmetro para a coleta de informações, porém com perguntas diferentes e visando os mesmos conteúdos abordados nos seminários. Foram colhidas informações de dez alunos da escola sede e anexos acerca de seus conhecimentos em relação à história da Física e de suas equações. Contamos com a ajuda de professores que cederam alguns minutos de suas aulas para que pudéssemos fazer a sondagem.

As perguntas feitas para os alunos e suas respostas estão expostas no quadro abaixo e foram transcritas de maneira fiel às suas respostas. Vejamos:

Tabela 6. Teste de sondagem de alunos (Parte I)

QUESTÕES	ALUNO I	ALUNO II	ALUNO III	ALUNO IV	ALUNO V
01. Você conhece a história da física?	Sim	Sim	Sim, foi por causa da física que surgiu a revolução industrial.	Sim	Sim
02. Cite duas histórias da física que você conhece	Lei de Newton	A lei de Newton.	O ônibus espacial que explodiu na atmosfera devido a dilatação	Eletricidade , Lei da Gravitação e Relatividad e.	Explosão do Challenger. Telescópio Hubble.
leu em algum livro, artigo ou assistiu algum documentári o sobre a história da física?	Sim, um pouco em livro e assisti em um filme.	Não	Sim, a série Cosmos.	Sim	Sim. Série Cosmos, artigos sobre astronomia, atualidades cientificas, etc.
o4. Você conhece alguma história das equações da física? Qual?	Não	Não	Sim, conheço mas não sei a sua história	Sim, a teoria da Relatividad e de Einstein.	Sim. Lei da Gravidade, proposta por Newton.
o5. Seu professor costuma trabalhar paralelo aos conteúdos a contextualiz ação histórica da física?	Não, talvez por nós ser da primeira série.	Não	Sim, ele sempre gosta de mostrar a história, com também a contextualização do conteúdo.	Sim	Sim, pois o mesmo nos apresenta os físicos envolvidos, os experimentos realizados e as equações que serão usadas.

livro didático traz as informações necessárias sobre o contexto histórico da física?	Não.	-	Algumas, nem todos traz a história da física.	Sobre o contexto histórico nem tanto.	Sim. Pois o mesmo mostra tudo o que houve na época na época do desenvolvimen to do conteúdo estudado.
o7. Você conhece a história de algum físico? Qual?	Sim. Newton.	Sim, Newton.	Sim, a de Newton, pois existem vários relatos sobre sua vida em livros, internet e etc.	Sim, Einstein, Tesla e Maxwell	Sim, Isaac Newton.
08. Você sabe para que servem as Equações de Maxwell?	Não especifica mente, porém já poderia ter visto em alguma aula ou palestra.	Não	Não, ainda não estudei sobre as equações de Maxwell	Mais ou menos	Sim. Para explicar alguns conceitos referentes ao magnetismo.
o9. Você conhece a história da maçã de Newton? Qual o meio você obteve esta informação?	Sim, por meio de uma palestra.	Sim, por meio da palestra	Sim, um livro que conta toda a vida e pelo professor comentar sobre isso na sala.	Conheço, obtive no fundamental , mas creio que não seja verdade.	Sim. Por meio da aula de Física do 2° ano.
10. O que você acha de o professor usar a história das equações da física em sala de aula?	Interessant e, pois passamos a ficar por dentro de algumas histórias que ainda não vimos falar.	Acho muito legal pra gente aprender mais sobre equações da física.	Interessante, pois assim poderemos entender para que servem cada uma delas e de onde elas foram tiradas.	Muito boa, auxilia muito na aprendizage m.	Bem interessante, pois assim não nos atentamos somente para as equações. Passamos a entender, de forma mais clara, as equações da física.

(Fonte: Próprio autor)

Analisando a primeira parte das respostas dos cinco primeiros alunos expostas no quadro acima, todos afirmaram conhecer a história da Física e demonstraram também a popularidade do físico Isaac Newton, porém não conhecem de forma aprofundada a sua história. Sobre os aspectos de conhecimentos históricos da Física, alguns citaram fatos ocorridos recentemente que não tem muita ligação com a sua história, mas com suas aplicações. Quanto a ler, assistir algo sobre Física ou conhecer alguma história das equações, alguns citaram que já assistiram a popular série Cosmos, mas também já leram algo em artigos ou livros, porém alguns dizem não conhecer muito sobre a criação das equações. As opiniões sobre os livros didáticos foram quase que total no consenso quanto ao livro fornecer apenas algumas informações sobre os aspectos históricos e sobre o professor trabalhar paralelo aos conteúdos a contextualização. Não conhecer os assuntos como as equações de Maxwell, foi muito comum entre os alunos, isso porque este assunto é tratado somente no ensino superior, mas é válido os professores sempre citarem em sala por conta da importância que elas tem para o eletromagnetismo. Tivemos outro consenso também entre os alunos com a possibilidade de o professor trabalhar paralelo aos conteúdos de sala o contexto histórico, segundo eles, seria uma sugestão interessante para auxiliar na aprendizagem.

A continuação do teste de sondagem está descrito na tabela 7, de maneira fiel como os alunos responderam, vejamos:

Tabela 7. Teste de sondagem de alunos (Parte II)

QUESTÕES	ALUNO VI	ALUNO VII	ALUNO VIII	ALUNO XIX	ALUNO XX
01. Você conhece a história da física?	Não	Sim. Possuindo o livro didático e um breve conhecimento sobre o desenvolvimento da física é possível ter acesso a suas histórias	Sim	Não	Não sei
02. Cite duas histórias da física que você conhece	Não conheço	A maçã de Newton e algo mais histórico e conceitual a progressão das áreas da física.	Newton e a maçã e Aristóteles	Não sei	Não sei

03. Você já leu em algum livro, artigo ou assistiu algum documentário sobre a história da física?	Não	Sim. O livro didático e o acesso diário a internet possibilitam um maior entendimento sobre os assuntos que envolvem a física e seus componentes.	Sim	Não	Não
04. Você conhece alguma história das equações da física? Qual?	Não	Sim. A lei da gravitação, funções horárias, movimento variado, movimento vertical no vaco, etc.	Sim, a de Torrichelle	Não conheço	Não sei
professor costuma trabalhar paralelo aos conteúdos a contextualizaç ão histórica da física?	Algumas Vezes	Sim. Ele sempre procura os meios cabíveis e mais compreensíveis de ensino.	Não	Não	Sim, fala sobre os físicos.
06. O seu livro didático traz as informações necessárias sobre o contexto histórico da física?	Não	Sim, o respectivo livro está apto de todas as informações necessárias para a transferência de conhecimentos.	Não	Sim	Sim
07. Você conhece a história de algum físico? Qual?	Sim, Albert Einstein.	Sim. A história de Albert Einstein é bastante comum, já que o mesmo foi quem propôs a teoria da Relatividade sendo considerado um dos maiores gênios da humanidade.	Sim, Albert Einstein.	Não	Não
08. Você sabe para que servem as Equações de Maxwell?	Descrever os fenômenos eletromag néticos	Sim, serve para encontrar as equações das ondas eletromagnéticas no vácuo (totaliza em 4 equações)	Sim, serve no eletromagneti smo e na óptica.	Não	Não sei

09. Você conhece a história da maçã de Newton? Qual o meio você obteve esta informação?	Sim, internet	Sim, obtive este conhecimento no início do estudo da física e no início do ensino médio.	Sim, em um artigo.	Não conheço	Não sei
10. O que você acha de o professor usar a história das equações da física em sala de aula?	Ótima ideia, dessa maneira, os alunos terão uma melhor compreens ão das equações.	Já é habito do professor usufruir de métodos que auxiliem o aluno, portanto, este método já está contido em suas aulas.	Acho ótimo, deixaria o conteúdo mais interessante.	Acho muito boa, assim melhorar ia nosso conheci mento e nosso gosto pela física.	Acho bom que com as equações se adaptam os mais com o conteúdo

Fonte: Próprio autor

Nessa segunda parte, percebemos entre os alunos entrevistados que poucos conhecem alguma história sobre a Física e quando citam alguma, sempre surge a história da maçã de Newton. Também é quase que consensual entre este grupo de entrevistados que não leram nada sobre a história da Física, como também não sabem muito sobre os processos históricos das equações e que na maioria dos casos, o professor não trabalha em sala de aula a contextualização histórica dessa Ciência. Para este grupo de alunos, o livro didático traz as informações necessárias sobre a história da Física e está apto para ser utilizado nas aulas e que, são quase unânimes seus conhecimentos sobre Albert Einstein. Quanto ao conhecimento das equações de Maxwell, a maioria relatou saber para que servem, porém não sabem muito sobre a história de sua criação, eles ainda descreveram que se o professor começar a trabalhar com a história das equações nas aulas de Física aliado aos conteúdos, eles passarão a ter uma melhor compreensão de como utilizar as equações, e para eles, isso fará com que o gosto em aprender Física aumente.

3.5. Apresentação dos seminários

Cerca de quinze dias antes das apresentações de cada seminário, foi necessária a reunião com cada grupo para acompanhar a preparação dos membros das equipes e o

andamento da montagem do material a ser exposto. Como vídeos, slides ou qualquer outro tipo de entretenimento que possa ajudar os espectadores a compreender os assuntos que seriam expostos e chegar aos objetivos a serem alcançados, que é o sentido físico por trás de cada tema. Após verificar o que os estudantes haviam preparado, notamos que os primeiros grupos estavam preparados para expor seu tema. Veremos a seguir, uma descrição geral das apresentações dos seminários ocorridas entre os meses de agosto e setembro por cada turma já mencionada.

Na Figura 19, temos a apresentação da equipe V do 1° ano A, que ficou responsável em expor o tema do seminário I, no qual abrange a história da Cinemática e da Equação da Velocidade.

Fonte: próprio autor

A Figura 20 mostra a apresentação dos alunos que compõem a equipe IV, que também ficou responsável em apresentar o seminário I, cujo tema "História da Cinemática e da Equação da Velocidade."

Figura 20. Apresentação de Seminários 2°A

Fonte: próprio autor

A Figura 21 mostra os alunos da equipe V do 3° ano A, que ficaram na incumbência de apresentar o seminário III, sobre a história da Equação da Segunda Lei da Termodinâmica.

Figura 21. Apresentação de Seminários 3°A

Fonte: próprio autor

As primeiras apresentações aconteceram no dia 28 de agosto de 2017 e as últimas no dia 25 de setembro do mesmo ano. Nas primeiras apresentações, houve um certo desconforto dos primeiros grupos, principalmente entre os alunos do 1º ano, por não ser muito

comum em uma disciplina, que na visão da maioria dos estudantes, tem base matemática. Soou um tom pouco estranho para eles essa apresentação que misturou história com cálculo, porém foi questão de tempo para que o acanhamento inicial passasse, e os apresentadores começassem a interagir com os demais alunos. As apresentações começaram com um tema muito comum para os integrantes do ensino médio, porém sem muita exploração contextual. O seminário I tinha como objetivo expor a origem dos conceitos de cinemática e o surgimento da equação da velocidade, muitos termos desconhecidos foram muito bem empregados pelos alunos que souberam explorar, não só a parte contextual, como também a formalização matemática que culminou na equação e as formas de aplicação no cotidiano.

Para conduzir as apresentações ocorridas em algumas turmas, solicitamos o auxílio de professores para acompanhar o desenvolvimento dos trabalhos dos estudantes, assim foi feito na turma do 3° A, em que convidamos um professor de Português, que analisou a desenvoltura e a estrutura da apresentação e um professor de Matemática, que se encarregou em observar os fatos históricos e as possíveis aplicações matemáticas envolvidas, Assim transcorreu a apresentação do seminário II, que tratava da Lei da Gravitação Universal para a turma, sendo considerados satisfatórios por parte dos docentes convidados. Tivemos alguns acidentes pelo caminho, como a recusa em apresentar por parte de alguns alunos e os pedidos de adiamentos de uma determinada equipe, que segundo seus membros, não se organizaram a tempo da data estabelecida.

Quando se observa este tipo de trabalho organizado pelos alunos, tem-se a noção de que é possível resgatar o estímulo dos mesmos a estudar, esse sentimento veio ao observar a apresentação de uma equipe do 1° ano sobre o assunto de Termodinâmica no seminário III. As analogias feitas por um dos membros dessa equipe chamou a atenção dos que observavam o debate, quando este lembrou o filme *Titanic*, no momento em que o capitão mandou ir a todo vapor, dessa maneira, o integrante fez referências à primeira lei da Termodinâmica, que fala da conversão de calor em trabalho, são esses momentos que sentimos o prazer de ensinar Física e vê-la como caminho que leva a solucionar diariamente nossas indagações.

Durante o processo de aplicação do nosso produto educacional, recebemos no dia 22 de setembro em nossa escola, os professores Dr. Wilton Bezerra de Fraga, docente responsável pela disciplina e Dr. Amarílio Gonçalves Coelho Júnior, coordenador do polo 56, estes vieram acompanhar a aplicação e a metodologia do produto educacional na turma do 3° ano A. Na sala, ainda contamos com a presença de um professor de Matemática e uma professora de Português, que tinha a função de avaliar a apresentação. Sendo essa uma

oportunidade de observar o trabalho que estava sendo desenvolvido, coincidentemente, o tema relacionado para este dia foi o seminário IV (as equações de Maxwell). A indagação inicial dos professores presentes era de como seria a abordagem de um tema complexo sem base no ensino médio. A resposta veio com a geniosa apresentação dos membros dessa equipe, que souberam esmiuçar o contexto histórico entrelaçado com a fundamentação matemática, da forma de como os alunos conseguiram mostrar a Física envolvida em cada equação e suas aplicações. Foi alvo de elogios por parte dos professores, que acompanharam o trabalho dos alunos. O Seminário V fechou essa parte da pesquisa, os assuntos relacionados à Física Moderna inseridos na famosa equação da equivalência de Einstein deram tons finais ao nosso projeto. A satisfação em observar o trabalho dos alunos, envolvendo o uso da Física com questões atuais, nos revela que é possível resgatar o gosto pela procura e satisfação pela descoberta e, nós professores, somos os responsáveis em fazer essa transformação.

Abaixo temos a fotografia dos professores Dr. Wilton e do Dr. Amarílio, que é o coordenador do curso do MNPEF⁹, polo 56 e o professor de Física José Romildo de Moura, com os alunos do 3° A. Na ocasião da visita para acompanhamento da aplicação do Produto Educacional na escola.

Figura 22. Professor e coordenador do MNPEF acompanhando a aplicação do produto

Fonte: Próprio autor

Essa metodologia de trabalho, desenvolvida durante as aulas de Física, nos faz crer que estamos no caminho certo, dando a possibilidade de poder resgatar dos estudantes o gosto pela pesquisa e o fascínio pela Física. Ver os estudantes se portarem da maneira como

_

⁹ Sigla referente ao Mestrado Nacional Profissional no Ensino de Física.

foi observado durante a execução do projeto, deixa a reflexão de que podemos explorar campos ainda maiores que podem gerar melhorias para o ensino médio. Nossa investigação rendeu bons resultados, que serão expandidos para outros temas até que se possa alcançar um grande número de conteúdos, possibilitando aos professores de todo o Brasil uma forma fácil de trabalhar a Física em sala de aula com os alunos. Proporcionar a eles a manipulação sem receio o curso do desenvolvimento histórico dessa ciência que todo dia nos revela o fascinante domínio de suas leis em nosso cotidiano, é esse tipo de trabalho que promove a melhoria no ensino de Física e os resultados obtidos gratificam o oficio do professor.

4. RESULTADOS E DISCUSSÕES

Esperar bons resultados de um trabalho que está sendo executado com alunos do ensino médio durante as aulas de Física, é uma meta que todo professor deseja alcançar durante o período em está no magistério, essa sensação foi sentida durante a aplicação do produto educacional, que se utilizou da história das equações da Física, apresentadas em forma de seminários, visando o aprendizado.

A tabela abaixo mostra os desempenhos e conceitos obtidos pelas equipes do 1° A durante a aplicação do projeto, ainda é apresentada abaixo em cada tabela, uma síntese geral sobre os aspectos positivos e o que podem ser melhorados para futuras aplicações.

Tabela 9. Quadro de desempenho dos alunos do 1° A

	DESEMPENHO NA EXPOSIÇÃO 1° ANO "A"						
Grupos → PONTUAÇÃO (De 1 a 5) ↓	EQUIPE 01 SEMINÁRIO IV	EQUIPE 02 SEMINÁRIO III	EQUIPE 03 SEMINÁRIO V	EQUIPE 04 SEMINÁRIO II	EQUIPE 05 SEMINÁRIO I		
Exposição do conteúdo	3,5	4,0	4,0	4,0	3,0		
Sequência da apresentação	4,0	4,0	4,0	4,0	4,0		
Objetivos na abordagem do tema	3,0	4,0	3,0	3,0	3,0		
Qualidade do material de apresentação	4,0	4,0	4,0	4,0	4,0		
Compreensão do tema e sua relação com a Física	2,0	4,0	3,0	3,0	3,0		
Cumprimento do tempo	3,5	5,0	4,0	3,0	2,0		
TOTAL DE PONTOS	20	25	22	21	19		

CONCEITO De 10 a Razoáv (50%	De 21 a 25	De 21 a 25 Bom (75%)	De 21 a 25 Bom (75%)	De 10 a 20 Razoável (50%)
------------------------------------	------------	-------------------------	-------------------------	---------------------------------

Fonte: Próprio autor

De acordo com os parâmetros de avaliação da turma do 1° A, expostos na tabela 8, observa-se que o conceito das equipes oscila entre razoável e bom. A turma é composta por 39 (trinta e nove) alunos frequentes com faixa etária entre 14 e 15 anos, sendo 12 (doze) homens e 27 (vinte e sete) mulheres com um nível razoável de conhecimentos em Física. E por ser uma turma, inicialmente ingressante no ensino médio, a maioria dos alunos mostraram maturidade nas apresentações, sendo destaque a desenvoltura, a postura, o conhecimento do assunto, a organização, o trabalho interativo, a maneira de como se comunicar com o restante da sala e o trabalho em grupo, foi um dos pontos importantes que fez do projeto um ponto de partida para melhorar o aprendizado em Física. Os trabalhos foram apresentados de forma clara e significativa, as exposições, a sequência, os objetivos e o material foram pontos fortes de destaque de cada grupo.

Alguns pontos observados durante a aplicação do projeto ainda precisam ser melhorados para determinados membros das equipes, dentre eles apontamos o nervosismo, a cola do papel, o tom de voz e o uso do tempo. Mesmo tendo acompanhado o processo de preparação das equipes e da confecção do material, sempre surgem esses pequenos inconvenientes que podem ser melhorados à medida que os alunos ganhem maturidade. Cabe ao professor, o papel de auxiliar essas correções em busca de melhorias. O que foi apresentado pelos grupos participantes, deixou impressões de que é possível aprender Física através de sua história e que torna essa metodologia de trabalho um aliado do ensino-aprendizagem com alto potencial de significância.

A Tabela 10 expõe os desempenhos e conceitos obtidos pelos grupos do 2° A, durante a aplicação do projeto.

Tabela 10. Quadro de desempenho dos alunos do 2° A

DESEMPENHO NA EXPOSIÇÃO 2° ANO A						
Grupos → PONTUAÇÃO (De 1 a 5) ↓	EQUIPE 01	EQUIPE 02	EQUIPE 03	EQUIPE 04	EQUIPE 05	
	SEMINÁRIO	SEMINÁRIO	SEMINÁRIO	SEMINÁRIO	SEMINÁRIO	
	V	II	IV	I	III	

CONCEITO	De 21 a 25 Bom (75%)	De 10 a 20 Razoável (50%)	De 10 a 20 Razoável (50%)	De 21 a 25 Bom (75%)	De 10 a 20 Razoável (50%)
TOTAL DE PONTOS	22	19	19	21	19,5
Cumprimento do tempo	4,0	3,0	3,0	3,0	3,0
Compreensão do tema e sua relação com a Física	3,0	2,0	2,0	4,0	2,5
Qualidade do material de apresentação	4,0	4,0	4,0	4,0	4,0
Objetivos na abordagem do tema	3,0	3,0	3,0	3,0	3,0
Sequência da apresentação	4,0	4,0	4,0	4,0	4,0
Exposição do conteúdo	4,0	3,0	3,0	3,0	3,0

Fonte: Próprio autor

A Tabela 9 apresenta o desempenho obtido pela turma do 2° A. Percebemos que os desempenhos estão na faixa do razoável para o bom, essa turma possui 38 (trinta e oito) alunos frequentes que são distribuídos entre 27 (vinte e sete) mulheres e 11 (onze) homens com faixa etária entre 15 e 16 anos, sendo que a maioria da sala possui um nível de conhecimento em Física considerado bom. Dos quesitos relacionados para avaliação, todos os grupos tiveram um bom desempenho na exposição, na sequência, nos objetivos e na qualidade do material. Na exposição, os erros frequentes por conta do nervosismo e o uso da cola durante a apresentação por parte de alguns alunos não comprometeu o desempenho coletivo dos grupos, também houve algumas falhas ao relacionar a compreensão do tema e a Física, que podem ser melhorados com a intervenção do professor.

O ponto de destaque das exposições, ficou por conta da postura assumida pela maioria dos membros de cada equipe, que mostraram firmeza em relação aos conhecimentos, a interatividade e o modo como houve a comunicação com o restante dos alunos. Essa metodologia adotada durante as aulas de Física serviu para melhorar o intercâmbio entre os alunos, que possuem conhecimento mais aprofundado com aqueles que têm certa dificuldade,

isso gerou uma permuta de ideias que culminou nas abordagens feitas durante as apresentações.

Após esse período de observação em que o produto educacional foi aplicado, verificamos que é possível aliar os estudos de Física com sua contextualização histórica. Esse modo de trabalho vem ganhando espaço nas aulas dessa disciplina, pois está cada vez mais frequente ver provas de vestibulares explorarem essa questão por conta da fundamentação teórica ser a base para o cálculo. Assim, destacamos que o produto educacional mostrou significativo avanço no aprendizado de Física na escola onde foi aplicado.

Abaixo é exposto na tabela 11 os desempenhos e conceitos atingidos pelas equipes do 3° A ao longo da aplicação do projeto.

Tabela 11. Quadro de desempenho dos alunos do 3° A

DESEMPENHO NA EXPOSIÇÃO 3° ANO A					
Grupos → PONTUAÇÃO (De 1 a 5) ↓	EQUIPE 01 SEMINÁRIO V	EQUIPE 02 SEMINÁRIO II	EQUIPE 03 SEMINÁRIO IV	EQUIPE 04 SEMINÁRIO I	EQUIPE 05 SEMINÁRIO III
Exposição do conteúdo	3,5	2,5	5,0	4,0	3,0
Sequência da apresentação	4,0	5,0	3,5	4,0	3,0
Objetivos na abordagem do tema	3,0	4,0	4,5	3,0	2,5
Qualidade do material de apresentação	4,0	5,0	5,0	4,0	4,0
Compreensão do tema e sua relação com a Física	3,5	2,5	5,0	4,0	2,0
Cumprimento do tempo	5,0	5,0	5,0	3,0	3,0
TOTAL DE PONTOS	23	24	28	22	17,5
CONCEITO	De 21 a 25 Bom (75%)	De 21 a 25 Bom (75%)	De 26 a 30 Excelente (100%)	De 21 a 25 Bom (75%)	De 10 a 20 Razoável (50%)

Fonte: Próprio autor

Na Tabela 10 são apresentados os dados obtidos durante a apresentação da turma do 3° A e os rendimentos referentes às equipes ficou entre razoável, bom e excelente. Essa sala possui 27 (vinte e sete) alunos frequentes com 13 (treze) homens e 14 (quatorze) mulheres entre 16 e 18 anos de idade, e seu nível de conhecimento sobre Física é considerado muito bom. De acordo com os questionamentos avaliativos em questão, as equipes obtiveram um ótimo desempenho em relação à exposição do conteúdo, sequência de apresentação, objetivos do tema e qualidade do material apresentado. A compreensão e o envolvimento do tema com a Física foi um dos fatores que merece muita atenção por conta da desenvoltura utilizada de um linguajar simples e com as analogias utilizadas para relacionar a Física e suas aplicações. A utilização do tempo de apresentação foi outro ponto positivo na maioria das equipes, demonstrando maturidade e organização do trabalho coletivo.

Alguns pontos precisam ser corrigidos como, por exemplo, a postura, a cola do papel e o entendimento do assunto por parte de alguns membros. Esses aspectos podem ser melhorados, e para que isso ocorra, é necessário a presença do professor, a figura mais gabaritada para resolver esses problemas pontuais.

A aplicação do produto educacional nessa turma de 3º ano foi considerada um sucesso devido aos altos índices de participação, pesquisa e aprendizado. Talvez o fator que mais contribuiu com esse desempenho seja pela experiência já adquirida ao longo dos três anos de estudo e já estar em curso de preparação para a entrada ao ensino superior. A maneira de como foram conduzidos os trabalhos com pesquisas e estudos, nos deu índices de que ainda podemos melhorar e expandir o projeto para outros conteúdos, mas a utilização dessa metodologia em sala de aula, nos leva a sustentar a ideia de que é pertinente utilizar a história das equações da Física para aprendê-la, só é preciso ter criatividade.

4.1. Discussões

Com o fim das aplicações do projeto em sala de aula e perceber que houve uma grande evolução por parte dos alunos em termos dos conhecimentos em Física, adquiridos durante a fase de apresentação dos seminários. Agora é a hora de verificar por meio de um teste diagnóstico se além desses conhecimentos adquiridos durante a aplicação do projeto, os pontos deficientes antes do uso do produto educacional foram em partes corrigidos. De maneira proposital, aplicamos um teste em uma turma logo após a conclusão das exposições,

já nas turmas seguintes após duas semanas objetivando verificar a retenção dos conteúdos estudados. Também foi notório que após os estudos direcionados, a aplicação do seminário e dos testes de conhecimentos postos no período de execução do projeto. Os alunos evoluíram em termos de conhecimentos sobre os assuntos relacionados à Física como também em relação entre si. Isso mostra que esse tipo de atividade, quando aplicada em sala de aula, é um método que além de preparar os estudantes para a vida acadêmica, também consegue estreitar os laços de amizade e afetividade entre os participantes.

Os gráficos abaixo irão informar o que foi obtido em termos de resultados para que possamos aprimorar o que foi positivo e melhorar o que não deu certo.

4.2. Análise sobre o desempenho do 1° ano A

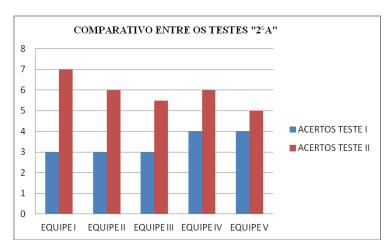
Diante dos fatos apresentados ao logo deste trabalho, como forma de finalizar e obter dados que expressam o que foi absorvido pelos alunos. O gráfico abaixo mostra os comparativos em relação aos resultados obtidos entre o primeiro e o segundo teste nas turmas que tiveram a aplicação do produto educacional. Na turma do 1° A, vejamos.

COMPARATIVO ENTRE OS TESTES "I°A"

12
10
8
6
4
2
0
EQUIPE I EQUIPE II EQUIPE III EQUIPE IV EQUIPE V

Gráfico 1. Comparativo dos testes do 1º A

Fonte: Próprio autor


De acordo com os dados expressos no gráfico 1, é perceptivel que houve uma oscilação das equipes em comparação entre os teste I e II. De forma proposital, o segundo teste foi realizado duas semanas após a finalização da última apresentação do seminário, motivo para o qual entendemos que ouve esses dados oscilantes. Assim, vemos que as equipes III e IV conseguiraram melhorar seus desempenhos não da forma que desejamos mas, já é

uma melhoria significativa, enquanto que a equipe II se matenve estável. Os dados da equipe I e da equipe V geraram um sinal de alerta, e com isso, faz-se necessário fazer uma investigação para detectar os percalços gerados, para assim trabalhar em cima disto. Então, constatamos o que já havia sido imaginado e que acontece sempre durante o período de provas, ou seja, os alunos das equipes supracitados estudaram somente para a apresentação dos seminários e não conseguiram reter durante muito tempo os conteúdos referentes aos seus temas, pois imaginam eles que essa cobrança é momentânea e não servirá para estudos futuros.

Portanto, entendemos que nós professores, devemos trabalhar com nossos alunos novas estratégias, de modo a dar mais significado ao que se pretende armazenar, e que assim, possam melhorar a retenção dos conteúdos estudados seja para avaliações ou para qualquer tipo de exposição, pois temos que conscientizá-los de que os conhecimentos mantidos em suas mentes servirão para o resto de sua jornada acadêmica.

4.3. Análise sobre o desempenho do 2° ano A

Diante dos dados expostos no gráfico 2, será feita uma análise dessas informações bem como apontamentos de melhorias da forma de aplicação do produto educacional.

Gráfico 2. Comparativo dos testes do 2° A

Fonte: Próprio autor

As informações que o gráfico 2 nos repassa é de que houve uma significativa melhoria de aprendizagem no teste II em relação ao teste I. O fato de os alunos serem de uma turma de 2º ano, que já está habituada com as o deveres da escola, talvez seja um quesito

importante para essa melhoria, pois quando o estudante já está acostumado com o ritmo escolar de uma determinada instituição, sente-se livre em buscar novos conhecimentos. Outros fatores também podem influenciar nessa questão da aprendizagem. O relacionamento com o professor e a maturidade de estar em meio caminho do ensino médio. Ao observar o que se apresenta no gráfico acima, temos que o maior rendimento ficou com a equipe I, que subiu quatro pontos em relação ao primeiro teste e o segundo maior rendimento ficou com a equipe II, que subiu três pontos. A equipe III subiu dois pontos e meio, seguido pela equipe IV com dois pontos e a equipe V com um ponto.

Destacamos que as equipes I e III exibiram o tema sobre a equação da equivalência e Equações de Maxwell, que já fazem parte dos assuntos da Física Moderna, sendo estes conteúdos não muito comuns para o ensino médio e, principalmente para alunos do 2º ano, foi uma surpresa a obtenção destes resultados. Surpresa também ficou com as equipes IV e V que expuseram respectivamente sobre a história da Cinemática e a Equação da Velocidade e sobre a Termodinâmica. O sobressalto se deu por conta de um desse tema ser comum no 1º ano do ensino médio e que os alunos dessa turma já tiveram contato com esse assunto no ano anterior, e o outro foi visto concomitante já nessa série. A temática da equipe II sobre as Leis de Newton também foi destaque por conta do aprofundamento feito pelos alunos e merecem destaque por causa da produção. Lembrando que o segundo teste foi feito na semana seguinte, após a conclusão das apresentações dos grupos.

Ainda há o que se trabalhar para melhorar e alcançarmos os aperfeiçoamentos necessários. O professor deverá intervir em muitas situações como é caso de fazer os alunos a opinar por conta própria e não se apegar exclusivamente ao que está escrito no texto. Esse tipo de atividade é uma forma de trabalhar os conteúdos de Física e auxiliar o educando a desenvolver sua autonomia educacional.

4.4. Análise sobre o desempenho do 3° ano A

As informações referentes ao desempenho dos alunos da turma do 3° ano A estão expostas no Gráfico 3. Logo abaixo, será feito um balanço sobre as equipes.

COMPARATIVO ENTRE OS TESTES "3°A"

12
10
8
6
4
2
0
EQUIPE I EQUIPE III EQUIPE IV EQUIPE V

Gráfico 3. Comparativo dos testes do 3ºA

(**Fonte:** Próprio autor)

Ao observar o gráfico acima, podemos concluir que houve expressivas melhorias de aprendizagem das equipes I, II e V, que tiveram como temas, respectivamente a Equação da Equivalência, Lei de Newton e Termodinâmica. Se tratando de 3º ano, dois desses temas já são comuns à vida estudantil, que é caso dos assuntos relacionados à Mecânica e sobre o Calor, vistos por eles no 1º e 2º ano do ensino médio. Enquanto que os conteúdos relacionados à Física Moderna pouco são explorados nessa etapa de ensino, os estudantes conseguiram expôr de maneira convicta, o que era desejado. Já as equipes III e IV que se incumbiram de externar os assuntos referentes às Equações de Maxwell (esta nunca visto no ensino médio) e a Cinemática e Equação da Velocidade chegaram ao final do projeto, mantendo-se no mesmo nível em que se encontravam inicialmente, havendo neste caso, uma conservação da aprendizagem que ainda pode ser melhorada com a interferência do professor.

Vale ressaltar que turmas de 3° ano, já possuem uma bagagem diferenciada em relação às turmas anteriores e o que o professor precisa fazer é oferecer condições como por exemplo, ofertar livros, apostilas e indicar *sites* com informações precisas sobre o assunto. Muito ainda tem que ser melhorado, mas a primeira impressão de como os alunos se portaram durante a aplicação do Produto Educacional, mostra que essa atividade pode ser um meio facilitador para o ensino de Física. O Segundo teste foi aplicado uma semana após findar as exposições dos seminários.

Diante do exposto, salientamos que é necessário trabalhar também formas que ajudem o aluno a reter informações, ou seja, que eles possam estudar um determinado assunto e guardar aquele conhecimento para que possa ser utilizado posteriormente e não da forma como viemos acompanhando, em que o aluno estuda e logo em seguida esquece. Segundo Moreira (2001, p. 18), esse tipo de situação é conhecida como Aprendizagem Mecânica, ou

seja, aquela que não ficará consolidada na estrutura cognitiva do estudante e logo se apaga. Dessa forma, nós professores, temos a missão de trabalhar da forma que os estudantes possam conservar esse conhecimento adquirido de maneira significativa, ou seja, um tipo de conhecimento que resulta na ancoragem e no crescimento dos subsunçores ¹⁰ à medida que as novas informações modificam o estado inicial, assim, aumentamos as chances de garantir o aprendizado dos alunos de forma eficiente e concreta.

Após o fim do período de aplicação do produto educacional, ouvimos a opinião de três alunos participantes do projeto, eles relataram o que acharam de trabalhar com essa metodologia aplicada em sala de aula, utilizando a história das equações. Abaixo transcrevemos de modo fiel o depoimento de três alunos que participaram ativamente do projeto pertencentes às turmas do 1° A, 2° A e 3° A. Para preservar a identidade dos estudantes, iremos chamar de aluno 01, 02 e 03, vejamos:

Aluno 01 – "Em meu compadecer, com equações em seminários, podemos ter um aprofundamento maior no assunto não é a mesma coisa que um professor ensinando, mas o aluno explicando também ajuda e muito, e ainda melhor quando sabe tirar dúvidas. Tive um conhecimento de muita coisa em pouco tempo que foi fundamental para o meu aprendizado em Física".

Aluno 02 – "Aprendi e passei a conhecer todo o processo histórico por trás da formulação das equações, bem como situações do dia a dia que envolvem as mesmas. Também passei a conhecer os diversos físicos e cientistas por trás das equações".

Aluno 03 – "Quando iniciei meus estudos de Física, no 1º ano encontrei dificuldade em decorar as fórmulas que eram apresentadas no estudo da mecânica. Optei por buscar entender como os estudiosos tinham chegado àquela fórmula para não apenas decorar uma equação, mas conseguir entender o que ela dizia. No 2º ano, quando você (Romildo), se tornou nosso professor, me identifiquei com sua metodologia por ela transcender a visão matemática que víamos até então. Entender toda a história por trás de uma equação nos mostra que a Física ultrapassa essa visão de fórmulas prontas o que, de certa forma, ajuda também no próprio desenvolvimento na área".

Com base nos depoimentos transcritos acima, percebemos que ainda é preciso melhorar, e que podemos expandir essa atividade com outros temas relacionados à Física para outras escolas. Isso pode ser feito através de grupos de palestras com o intuito de divulgar o ensino da Física através de sua história, por isso, entendemos que, o que já foi realizado se

_

Os subsunçores são estruturas específicas em que uma nova informação pode ser absorvida pelo cérebro humano, de forma organizada e que possui uma hierarquia conceitual que armazena experiências prévias do aprendiz.

tornou uma parcela muito significativa para o objetivo que se deseja alcançar no aprendizado dessa ciência.

5. CONSIDERAÇÕES FINAIS

Produzir um material que possa ser aplicado em sala de aula, objetivando ajudar o professor na missão de resgatar no aluno o gosto de estudar Física, é uma tarefa bastante desafiadora para quem também está diariamente no "batente" e observa a dificuldade que é lidar com a falta de concentração e o desinteresse dos alunos durante o curso letivo. Utilizar metodologias compatíveis para melhorar o desempenho dos estudantes no ensino de Física, é uma alternativa que cada professor deve buscar, caso queira alcançar uma progressão no desenvolvimento do aluno. Essas práticas metodológicas alternativas tendem a diminuir a distância que ainda existe entre o método tradicional, pautada no ensino centrado em procedimentos mecânicos e o método diferenciado que será escolhido pelo professor, visando à participação ativa do aluno no seu próprio processo de ensino-aprendizagem.

Infelizmente, nossas escolas ainda carregam o fardo de um currículo que se encontra completamente ultrapassado e que o ensino de Física tem como base o uso de fórmulas para resoluções de problemas nos quais não atendem às atuais necessidades do estudante na promoção do conhecimento cientifico e de um ensino contextualizado ajustado ao seu cotidiano. Dessa forma, entendemos que o ensino de Física tem a função de promover ao aluno uma liberdade mental, cujo objetivo é fazer com que eles ganhem mais autonomia na tomada de decisões, referentes aos processos que envolvam interpretações de fenômenos de interação do homem como parte da natureza bem como sua efetiva contribuição para a sua formação cultural e cientifica. De acordo com os PCN (BRASIL, 1999, p. 22) a orientação é que o "ensino Física deve contribuir para a formação cultural e cientifica efetiva, permitindo ao individuo a interpretação dos fenômenos e processos naturais" desta forma o ensino de Física deve contribuir para o discernimento do aluno, dando-o habilidades para entender por si só os eventos em sua volta.

Centrado na ideia de que o aluno poderá despertar sua capacidade intelectual muito além do que se imagina, dependendo das condições que são oferecidas bem como a inclusão deste em grupos de estudos que possam favorecer o processo de ensino-aprendizagem. Ao se inter-relacionar com diferentes membros do grupo foi produzido um material didático para auxílio dos professores de Física do ensino médio das escolas públicas, que visam trabalhar com uma metodologia diferenciada. De forma que possa resgatar no estudante o gosto pela disciplina, e assim, promover uma formação cultural científica através do conhecimento de sua construção histórica, impactando diretamente na vida de todos nós.

Pois, ao trabalharmos durante dois meses em sala de aula e de forma complementar no contraturno com a história das Equações da Física, usando a metodologia dos seminários expositivos, promovendo debates e questionamentos entre os estudantes. Verificamos que o modo de trabalho foi peça fundamental para grande parte do aprendizado do aluno na disciplina. Além desse método, também foi realizado uma consulta tanto com os alunos, que participaram do projeto, como os que não tiveram participação. O que foi apurado perante aos resultados é que a aceitação do método proposto para ser utilizado nas aulas foi muito satisfatória, já que o processo de contextualização histórica torna a disciplina de Física mais atraente e humanizada.

Outra forma de investigar se existe uma valorização dos processos históricos da Física, é analisando os livros didáticos dispostos através do Programa Nacional do Livro Didático (PNLD), assim, examinamos as coleções oferecidas para o ano de 2018 e nas dezenove obras direcionadas pelas editoras para estudo dos professores das escolas públicas, constatamos que pouco se valoriza o contexto da Ciência que deu início às ideias atuais. Infelizmente, as páginas dedicadas à História da Física estão resumidas a notas rápidas, enquanto que as partes biográficas estão compactadas sempre a um mesmo grupo de personagens, em que muitas vezes, a história é contada de forma superficial. Diante dessa análise, a aplicação do Produto Educacional em forma de material didático vem suprir essa deficiência contextual, trazida pelos livros didáticos, servindo de complementação às aulas, dando suporte para os alunos a desenvolverem uma opinião própria acerca dos fatos que levaram os cientistas a desenvolverem as teorias dos temas propostos para os seminários.

A utilização dos seminários como mediação para a aprendizagem em Física desencadeou situações positivas ao longo da aplicação do projeto. Dentre as situações, podemos destacar a comunicação expressiva entre os membros de grupos de estudo, gerando durante o planejamento das ações um debate com socializações de ideias entre os que integram nos grupos, certificando a teoria Sociointerativa de Vygostky. Base teórica de apoio ao projeto. Outro ponto dessa metodologia que consideramos significativo é que este serviu de instrumento de aproximação entre aluno-professor em que dessa relação, o aluno foi estimulado a pensar, analisar, sugerir soluções e excitar a importância pela pesquisa científica. Portanto, com este método, o interesse pelo estudo da Física aumentou consideravelmente nas turmas em que tivemos aplicação do Produto Educacional bem como a participação mais efetiva dos alunos durante as explanações dos conteúdos, principalmente quando foi feito a adequação com a contextualização.

Diante do que foi exposto pelos estudantes e pelo que ficou certificado pelos professores, que participaram das observações durante a aplicação do Produto Educacional, atestamos que a proposta escolhida para trabalho atingiu os objetivos desejados, ou seja, a utilização de componentes históricos nas aulas de Física serviu de instrumento para desencadear nos alunos o gosto pela disciplina. De modo que os tornou mais dispostos durantes as aulas. Assim sendo, a aplicação do projeto em que usamos os elementos históricos da Física, melhorou consideravelmente o desempenho e a aprendizagem dos alunos. E ainda, despertou ideias complementares que serão amadurecidas e também aplicadas futuramente, na qual destacamos a confecção de outros materiais didáticos para o auxílio de professores e alunos, bem como a possibilidade de arquitetar dentro da escola conjuntamente com os alunos, a criação de um grupo de palestras sobre a história da Física e suas equações. Logo, estaremos dando a oportunidade para que outros alunos possam conhecer os processos históricos dessa ciência encantadora.

REFERÊNCIAS

ALTHAUS, M. T. M. O Seminário como estratégia de ensino na pós-graduação: concepções e práticas. In: X CONGRESSO NACIONAL DE EDUCAÇÃO - EDUCERE, 2011, Curitiba. EDUCERE X CONGRESSO NACIONAL DE EDUCAÇÃO. CURITIBA, 2011.

BRASIL. MEC. Secretaria de Educação Média e Tecnológica. *Parâmetros Curriculares Nacionais*: Ensino Médio. Brasília: Ministério da Educação, 1999.

BRASIL. Ministério da Educação. Governo Federal. Base Nacional Curricular Comum: BNCC - APRESENTAÇÃO. Disponível em: http://basenacionalcomum.mec.gov.br/documentos/BNCC - APRESENTACAO.pdf>. Acesso em: 15 de Jan. 2016.

BRASIL. Ministério da Educação. PCN+ Ensino Médio: Orientações Educacionais Complementares aos Parâmetros Curriculares Nacionais para o Ensino Médio. Ciências da Natureza, Matemática e suas tecnologias. Brasília: Ministério da Educação/Secretaria de Educação Média e Tecnológica, 2002. Disponível em: < http://portal.mec.gov.br/seb/arquivos/pdf/CienciasNatureza.pdf>. Acesso em: 20 de Jan 2016.

BRASIL. Secretaria de Educação Básica. Ministério da Educação. Orientações Curriculares para o Ensino Médio – Ciências da Natureza, Matemática e suas Tecnologias. Brasília, 2006. Disponível em: http://portal.mec.gov.br/seb/arquivos/pdf/book_volume_02_internet.pdf>Acesso em 10 jul. 2017.

CAMPOS, Dinah Martins de Souza. Psicologia da Aprendizagem – 8ª Ed. Petrópolis, Vozes, 1979.

CHAVES, M. H. R. O gênero seminário escolar como objeto de ensino: instrumentos didáticos nas formas do trabalho docente. 2008. (Dissertação).

DELIZOICOV, Demétrio. Física/ Demétrio Delizoicov, José André Peres Angotti; colaboração Alice Campos Pierson. - São Paulo: Cortez, 1992. - 2. ed. Ver. - (Coleção magistério. 2° grau. Série formação gera)

FELICIANO, G. H. M.; SILVA, W. M. Seminário acadêmico, mais que um gênero: um evento comunicativo. In: SILEL, 2013, Uberlândia. Anais do Silel. Uberlândia: EDUFU, 2013. v. 3.

FEYNMAN, Richard Phillips. Deve ser brincadeira, Sr. Feynman!/ Richard Phillips Feynman; Tradução de Claudia Bentes David – Brasília: Editora Universidade de Brasília: São Paulo: Imprensa Oficial do Estado, 200.

LDB – Leis de Diretrizes e Bases. Lei nº 9.394. 1996. Disponível em: http://portal.mec.gov.br/seed/arquivos/pdf/tvescola/leis/lein 9394.pdf Acesso em março de 2017.

LIBÂNEO, J. C. Adeus professor, adeus professora? – novas exigências educacionais e profissão docente. São Paulo: Cortez, 2006.

MATTHEWS, M. R. História, Filosofia e Ensino de Ciências: a tendência atual de reaproximação. **Caderno Catarinense de Ensino de Física**, Florianópolis, v. 12, n. 3, p. 164-214, dez. 1995.

MENEZES, L. C.. Vale a Pena Ser Físico?. São Paulo: Ed. Moderna, 1988. 80p.

MOREIRA, M.A. "Ensino de Física no Brasil: retrospectivas e perspectivas". Revista de Ensino de Física, São Paulo, 22 (1): 91-99, 2000.

MOREIRA, Marco Antonio; MASINI, Elci F. Salzano. **Aprendizagem Significativa: A Teoria de David Ausubel.** São Paulo: Centauro, 2001.

OLIVEIRA, Marta Khol de. Vygotsky: aprendizado e desenvolvimento: um processo sóciohistórico. São Paulo: Scipione, 1997.

OLIVEIRA, W. M. UMA ABORDAGEM SOBRE O PAPEL DO PROFESSOR NO PROCESSO ENSINO/APRENDIZAGEM. Inesul, Londrina, p. 01 - 12, 30 jan. 2014.

PAIVA, Vera Lucia Menezes de Oliveira e. História do material didático de língua inglesa no Brasil. In: Dias, Reinildes; Cristóvão, Vera Lúcia Lopes. (Org.). O livro didático de línguas estrangeira: múltiplas perspectivas. 1ed.Campinas: Mercado de Letras, 2009, v., p. 17-56.

PORTELA, S. I. C.; LARANJEIRA, Cassio C. O Estudo de Casos Históricos como Estratégia de Articulação da Dimensão Cultural da Ciência da Sala de Aula. In: V Encontro Nacional de Pesquisa em Educação em Ciências, 2005, Bauru. Atas do V Encontro Nacional de Pesquisa em Educação em Ciências, 2005.

REGO, Teresa Cristina. Vygotsky - Uma Perspectiva Histórico-CulturaL da Educação. Petrópolis: Vozes, 1995.

RODRIGUES, FRdeA; Bruno, R. C.; Cunha, G. A. A. SEMINÁRIOS TEMÁTICOS COMO ESTRATÉGIA INTERDISCIPLINAR DE APRENDIZADO E DESENVOLVIMENTO DE COMPETÊNCIAS EM FORMAÇÃO AVANÇADA. 2014. (Programa de rádio ou TV/Comentário)

VYGOTSKY, Lev Semenovich. A formação Social da Mente. Organizadores Michael Cole...[et. Al]: tradução José Cipola Neto, Luis Silveira Menna Barreto, Solange Castro Afeche. São Paulo: Martins Fontes, 1984.

SITES

EDUCAÇÃO DEFICIENTE: **Dilema de Mestre – Atenção do aluno dura só 20 minutos.** Disponível em: < http://educacaodeficiente.blogspot.com.br/2011/07/dilema-de-mestreatencao-do-aluno-dura.html>. Acesso em: 09 de Mar. 2017.

FOLHA DE SÃO PAULO: **Quase 50% dos professores não têm formação na matéria que ensinam.** Disponível em: http://www1.folha.uol.com.br/educacao/2017/01/1852259-quase-page-4

50-dos-professores-nao-tem-formacao-na-materia-que-ensinam.shtml?loggedpaywall>. Acesso em: 06 de Mar. 2017.

FUNDO NACIONAL DE DESENVOLVIMENTO DA EDUCAÇÃO (FNDE): **Guia do PNLD.** Disponível em: http://www.fnde.gov.br/programas/programas-do-livro/livro-didatico/guia-do-livro-didatico/item/11148-guia-pnld-2018>. Acesso em: 18 de Out. 2017.